Agnes Csiszár

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655059/publications.pdf

Version: 2024-02-01

566801 552369 27 876 15 26 citations h-index g-index papers 28 28 28 1281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aging-Induced Dysregulation of Dicer1-Dependent MicroRNA Expression Impairs Angiogenic Capacity of Rat Cerebromicrovascular Endothelial Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 877-891.	1.7	122
2	Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins. Langmuir, 2017, 33, 1051-1059.	1.6	111
3	Novel Fusogenic Liposomes for Fluorescent Cell Labeling and Membrane Modification. Bioconjugate Chemistry, 2010, 21, 537-543.	1.8	96
4	Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization. Molecules, 2012, 17, 1055-1073.	1.7	78
5	Deciphering the Functional Composition of Fusogenic Liposomes. International Journal of Molecular Sciences, 2018, 19, 346.	1.8	65
6	Resveratrol Encapsulated in Novel Fusogenic Liposomes Activates Nrf2 and Attenuates Oxidative Stress in Cerebromicrovascular Endothelial Cells From Aged Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 303-313.	1.7	56
7	Mechanical Properties of Bare and Protein-Coated Giant Unilamellar Phospholipid Vesicles. A Comparative Study of Micropipet Aspiration and Atomic Force Microscopy. Langmuir, 2010, 26, 11041-11049.	1.6	49
8	Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice. GeroScience, 2019, 41, 711-725.	2.1	45
9	Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3594-3603.	3.3	33
10	The phase transition behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membrane influenced by 2,4-dichlorophenol—an FT-Raman Spectroscopy Study. Chemistry and Physics of Lipids, 2006, 139, 115-124.	1.5	29
11	Effect of 2,4-dichlorophenol on DPPC/water liposomes studied by X-ray and freeze-fracture electron microscopy. Chemistry and Physics of Lipids, 2003, 126, 155-166.	1.5	21
12	On the Interpretation of the 1100 cm-1Raman Band in Phospholipids and Other Alkyl-Containing Molecular Entities. Journal of Physical Chemistry B, 2006, 110, 5842-5844.	1.2	20
13	Complex Size and Surface Charge Determine Nucleic Acid Transfer by Fusogenic Liposomes. International Journal of Molecular Sciences, 2020, 21, 2244.	1.8	20
14	Changing the Way of Entrance: Highly Efficient Transfer of mRNA and siRNA via Fusogenic Nano-Carriers. Journal of Biomedical Nanotechnology, 2019, 15, 170-183.	0.5	19
15	Influence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian Cells. Nanomaterials, 2019, 9, 1025.	1.9	18
16	Sensitivity to Strain and Shear Stress of Isolated Mechanosensitive Enteric Neurons. Neuroscience, 2018, 372, 213-224.	1.1	16
17	A bioanalytical assay to distinguish cellular uptake routes for liposomes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 301-308.	1.1	14
18	Plasma membrane functionalization using highly fusogenic immune activator liposomes. Acta Biomaterialia, 2014, 10, 1403-1411.	4.1	13

Agnes CsiszÃir

#	Article	IF	CITATION
19	Title is missing!. Magyar Apróvad Közlemények, 2002, 69, 53-63.	1.4	12
20	Biotin-conjugated fusogenic liposomes for high-quality cell purification. Journal of Biomaterials Applications, 2016, 30, 846-856.	1.2	10
21	Double-Shell Giant Vesicles Mimicking Gram-Negative Cell Wall Behavior during Dehydration. Langmuir, 2009, 25, 5753-5761.	1.6	9
22	Delivery of the Radionuclide 131I Using Cationic Fusogenic Liposomes as Nanocarriers. International Journal of Molecular Sciences, 2021, 22, 457.	1.8	7
23	Detecting the Effect of Very Low Amounts of Penetrants in Lipid Bilayers Using Raman Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 20727-20728.	1.2	6
24	A variational approach to vesicle membrane reconstruction from fluorescence imaging. Pattern Recognition, 2011, 44, 2944-2958.	5.1	3
25	The Basement Membrane in a 3D Breast Acini Model Modulates Delivery and Anti-Proliferative Effects of Liposomal Anthracyclines. Pharmaceuticals, 2020, 13, 256.	1.7	3
26	Fluorescence Correlation Spectroscopy Reveals Interaction of Some Microdomain-Associated Lipids with Cellular Focal Adhesion Sites. International Journal of Molecular Sciences, 2020, 21, 8149.	1.8	1
27	Vesicle systems for mimicking the effects of 2,4-dichlorophenol on cell membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 201-206.	2.3	0