
Claudia Som

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying the potential for circularity of industrial textile waste generated within Swiss companies. Resources, Conservation and Recycling, 2022, 182, 106132.	10.8	16
2	Material flow analysis of single-use plastics in healthcare: A case study of a surgical hospital in Germany. Resources, Conservation and Recycling, 2022, 185, 106425.	10.8	5
3	Factors Allowing Users to Influence the Environmental Performance of Their T-Shirt. Sustainability, 2021, 13, 2498.	3.2	13
4	Environmental Consequences of Closing the Textile Loop—Life Cycle Assessment of a Circular Polyester Jacket. Applied Sciences (Switzerland), 2021, 11, 2964.	2.5	17
5	Bio-Based Polyester Fiber Substitutes: From GWP to a More Comprehensive Environmental Analysis. Applied Sciences (Switzerland), 2021, 11, 2993.	2.5	13
6	How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective?. Sustainability, 2021, 13, 9922.	3.2	10
7	Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology, 2020, 14, 1241-1257.	3.0	41
8	Cotton and Surgical Masks—What Ecological Factors Are Relevant for Their Sustainability?. Sustainability, 2020, 12, 10245.	3.2	32
9	Editorial: Polymeric Nano-Biomaterials for Medical Applications: Advancements in Developing and Implementation Considering Safety-by-Design Concepts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 599950.	4.1	5
10	Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Frontiers in Bioengineering and Biotechnology, 2020, 8, 100.	4.1	57
11	How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Frontiers in Bioengineering and Biotechnology, 2020, 8, 165.	4.1	31
12	A Methodological Safe-by-Design Approach for the Development of Nanomedicines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 258.	4.1	44
13	Prospective environmental risk assessment of nanocellulose for Europe. Environmental Science: Nano, 2019, 6, 2520-2531.	4.3	21
14	Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Frontiers in Bioengineering and Biotechnology, 2019, 7, 214.	4.1	35
15	Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Frontiers in Bioengineering and Biotechnology, 2019, 7, 261.	4.1	62
16	Molecular Modeling for Nanomaterial–Biology Interactions: Opportunities, Challenges, and Perspectives. Frontiers in Bioengineering and Biotechnology, 2019, 7, 268.	4.1	55
17	Transparenz normativer Orientierungen in partizipativen TA-Projekten. TATuP - Zeitschrift Für TechnikfolgenabschÃæung in Theorie Und Praxis, 2019, 28, 58-64.	0.4	1
18	Eco-Efficient Process Improvement at the Early Development Stage: Identifying Environmental and Economic Process Hotspots for Synergetic Improvement Potential. Environmental Science & Technology, 2018, 52, 5959-5967.	10.0	11

CLAUDIA SOM

#	Article	IF	CITATIONS
19	Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. Journal of Cleaner Production, 2018, 174, 283-295.	9.3	132
20	Digging below the surface: the hidden quality of the OECD nanosilver dossier. Environmental Science: Nano, 2017, 4, 1209-1215.	4.3	3
21	From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 2016, 135, 1085-1097.	9.3	325
22	LICARA nanoSCAN - A tool for the self-assessment of benefits and risks of nanoproducts. Environment International, 2016, 91, 150-160.	10.0	53
23	Probabilistic environmental risk assessment of five nanomaterials (nano-TiO ₂ , nano-Ag,) Tj ETQq1 I	. 0. <u>78</u> 4314	rgBT /Overlo
24	Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. Journal of Cleaner Production, 2016, 112, 1199-1210.	9.3	24
25	Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenges. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	18
26	Life cycle assessment of façade coating systems containing manufactured nanomaterials. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	66
27	Life Cycle Assessment of a New Technology To Extract, Functionalize and Orient Cellulose Nanofibers from Food Waste. ACS Sustainable Chemistry and Engineering, 2015, 3, 1047-1055.	6.7	69
28	Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles. Technovation, 2014, 34, 420-430.	7.8	60
29	Toward the Development of Decision Supporting Tools That Can Be Used for Safe Production and Use of Nanomaterials. Accounts of Chemical Research, 2013, 46, 863-872.	15.6	54
30	Release of ultrafine particles from three simulated building processes. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	38
31	Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environment International, 2011, 37, 1131-1142.	10.0	209
32	The importance of life cycle concepts for the development of safe nanoproducts. Toxicology, 2010, 269, 160-169.	4.2	221
33	The Precautionary Principle as a Framework for a Sustainable Information Society. Journal of Business Ethics, 2009, 85, 493-505.	6.0	31
34	Studying the potential release of carbon nanotubes throughout the application life cycle. Journal of Cleaner Production, 2008, 16, 927-937.	9.3	319
35	Environmental and Health Implications of Nanotechnology—Have Innovators Learned the Lessons from Past Experiences?. Human and Ecological Risk Assessment (HERA), 2008, 14, 512-531.	3.4	34
36	Reviewing the environmental and human health knowledge base of carbon nanotubes. Ciencia E Saude Coletiva, 2008, 13, 441-452.	0.5	39

CLAUDIA SOM

#	Article	IF	CITATIONS
37	Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Environmental Health Perspectives, 2007, 115, 1125-1131.	6.0	364
38	Smart labels in municipal solid waste — a case for the Precautionary Principle?. Environmental Impact Assessment Review, 2005, 25, 567-586.	9.2	52
39	Effects of pervasive computing on sustainable development. IEEE Technology and Society Magazine, 2005, 24, 15-23.	0.8	15
40	Impacts of Future Information and Communication Technologies on Society and Environment. Dealing with Uncertainty in Prospective Technological Studies. , 2005, , 205-210.		0
41	The Precautionary Principle in the Information Society. Human and Ecological Risk Assessment (HERA), 2004, 10, 787-799.	3.4	25
42	Assessing the Human, Social, and Environmental Risks of Pervasive Computing. Human and Ecological Risk Assessment (HERA), 2004, 10, 853-874.	3.4	55