List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654787/publications.pdf Version: 2024-02-01

EVA DELLICED

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Chromium-Doped Mesoporous Tungsten Oxide for Gas Sensing Applications. Advanced Functional Materials, 2007, 17, 1801-1806.	7.8	241
2	Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. IScience, 2018, 4, 236-246.	1.9	232
3	The Role of Surface Oxygen Vacancies in the NO ₂ Sensing Properties of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19540-19546.	1.5	181
4	Modern trends in tungsten alloys electrodeposition with iron group metals. Surface Engineering and Applied Electrochemistry, 2012, 48, 491-520.	0.3	164
5	Multiwavelength Light-Responsive Au/B-TiO ₂ Janus Micromotors. ACS Nano, 2017, 11, 6146-6154.	7.3	155
6	A Novel Mesoporous CaO‣oaded In ₂ O ₃ Material for CO ₂ Sensing. Advanced Functional Materials, 2007, 17, 2957-2963.	7.8	129
7	Hybrid Helical Magnetic Microrobots Obtained by 3D Templateâ€Assisted Electrodeposition. Small, 2014, 10, 1284-1288.	5.2	124
8	Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion. ACS Applied Materials & Interfaces, 2015, 7, 6803-6811.	4.0	124
9	Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Physical Review B, 2007, 76, .	1.1	105
10	Magnetically driven Bi ₂ O ₃ /BiOCl-based hybrid microrobots for photocatalytic water remediation. Journal of Materials Chemistry A, 2015, 3, 23670-23676.	5.2	100
11	Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1709-1717.	1.5	97
12	Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2990-2994.	7.8	96
13	Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine. Electrochimica Acta, 2011, 56, 1399-1408.	2.6	93
14	Nanocrystalline Electroplated Cu–Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior. Advanced Functional Materials, 2010, 20, 983-991.	7.8	92
15	Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys fo biomedical applications: Microstructure benefits on the mechanical and corrosion performances. Materials Science and Engineering C, 2012, 32, 2418-2425.	or 3.8	90
16	Ni-, Pt- and (Ni/Pt)-doped TiO2 nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye. Applied Catalysis B: Environmental, 2016, 181, 270-278.	10.8	85
17	Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale, 2014, 6, 12490-12499.	2.8	84
18	Imaging Technologies for Biomedical Micro―and Nanoswimmers. Advanced Materials Technologies, 2019, 4, 1800575.	3.0	83

#	Article	IF	CITATIONS
19	Influence of the bath composition and the pH on the induced cobalt–molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 2003, 556, 137-145.	1.9	81
20	Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. Journal of Materials Chemistry, 2010, 20, 7021.	6.7	81
21	Hydrogen sorption performance of MgH2 doped with mesoporous nickel- and cobalt-based oxides. International Journal of Hydrogen Energy, 2011, 36, 5400-5410.	3.8	81
22	Structural, magnetic, and mechanical properties of electrodeposited cobalt–tungsten alloys: Intrinsic and extrinsic interdependencies. Electrochimica Acta, 2013, 104, 94-103.	2.6	81
23	Mesoporous NiCo ₂ O ₄ Spinel: Influence of Calcination Temperature over Phase Purity and Thermal Stability. Crystal Growth and Design, 2009, 9, 4814-4821.	1.4	78
24	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	1.1	78
25	Steam Purification for the Removal of Graphitic Shells Coating Catalytic Particles and the Shortening of Singleâ€Walled Carbon Nanotubes. Small, 2008, 4, 1501-1506.	5.2	76
26	Mesoporous Ni-rich Ni–Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media. Applied Catalysis B: Environmental, 2020, 265, 118597.	10.8	76
27	Electrodeposited cobaltî—,molybdenum magnetic materials. Journal of Electroanalytical Chemistry, 2001, 517, 109-116.	1.9	73
28	NEUTRON ACTIVATION OF ENGINEERED NANOPARTICLES AS A TOOL FOR TRACING THEIR ENVIRONMENTAL FATE AND UPTAKE IN ORGANISMS. Environmental Toxicology and Chemistry, 2008, 27, 1883.	2.2	72
29	Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 53-62.	1.5	72
30	Codeposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation. Electrochimica Acta, 2013, 114, 859-867.	2.6	70
31	Synthesis and Gas-Sensing Properties of Pd-Doped SnO ₂ Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals. Crystal Growth and Design, 2008, 8, 1774-1778.	1.4	69
32	Portable microsensors based on individual SnO ₂ nanowires. Nanotechnology, 2007, 18, 495501.	1.3	68
33	Reusable and Longâ€Lasting Active Microcleaners for Heterogeneous Water Remediation. Advanced Functional Materials, 2016, 26, 4152-4161.	7.8	66
34	Electrolyte-gated magnetoelectric actuation: Phenomenology, materials, mechanisms, and prospective applications. APL Materials, 2019, 7, .	2.2	66
35	Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO 2 anodes. Electrochimica Acta, 2017, 244, 199-208.	2.6	64
36	Grain Boundary Segregation and Interdiffusion Effects in Nickel–Copper Alloys: An Effective Means to Improve the Thermal Stability of Nanocrystalline Nickel. ACS Applied Materials & Interfaces, 2011, 3, 2265-2274.	4.0	63

#	Article	IF	CITATIONS
37	Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid–base titration. Chemical Physics Letters, 2008, 462, 256-259.	1.2	62
38	Assessment of the thermal stability of anodic alumina membranes at high temperatures. Materials Chemistry and Physics, 2008, 111, 542-547.	2.0	61
39	Water vapor detection with individual tin oxide nanowires. Nanotechnology, 2007, 18, 424016.	1.3	59
40	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 245-252.	1.5	57
41	Voltage-Controlled ON–OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano, 2018, 12, 10291-10300.	7.3	57
42	A comparison between fine-grained and nanocrystalline electrodeposited Cu–Ni films. Insights on mechanical and corrosion performance. Surface and Coatings Technology, 2011, 205, 5285-5293.	2.2	56
43	Use of the reverse pulse plating method to improve the properties of cobalt–molybdenum electrodeposits. Surface and Coatings Technology, 2006, 201, 2351-2357.	2.2	55
44	Multisegmented FeCo/Cu Nanowires: Electrosynthesis, Characterization, and Magnetic Control of Biomolecule Desorption. ACS Applied Materials & Interfaces, 2015, 7, 7389-7396.	4.0	54
45	Helical and Tubular Lipid Microstructures that are Electrolessâ€Coated with CoNiReP for Wireless Magnetic Manipulation. Small, 2012, 8, 1498-1502.	5.2	51
46	Improvement to the Corrosion Resistance of Ti-Based Implants Using Hydrothermally Synthesized Nanostructured Anatase Coatings. Materials, 2014, 7, 180-194.	1.3	50
47	Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection. Sensors and Actuators B: Chemical, 2007, 126, 18-23.	4.0	48
48	Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation. Advanced Functional Materials, 2013, 23, 823-831.	7.8	48
49	Properties of Co-Mo coatings obtained by electrodeposition at pH�6.6. Journal of Solid State Electrochemistry, 2004, 8, 497-504.	1.2	47
50	Facile <i>in Situ</i> Synthesis of BiOCl Nanoplates Stacked to Highly Porous TiO ₂ : A Synergistic Combination for Environmental Remediation. ACS Applied Materials & Interfaces, 2014, 6, 13994-14000.	4.0	46
51	Biodegradable Small‣cale Swimmers for Biomedical Applications. Advanced Materials, 2021, 33, e2102049.	11.1	44
52	Electrodeposition of soft-magnetic cobalt–molybdenum coatings containing low molybdenum percentages. Journal of Electroanalytical Chemistry, 2004, 568, 29-36.	1.9	43
53	Mapping of magnetic and mechanical properties of Fe-W alloys electrodeposited from Fe(III)-based glycolate-citrate bath. Materials and Design, 2018, 139, 429-438.	3.3	42
54	Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation. Advanced Functional Materials, 2017, 27, 1701904.	7.8	41

#	Article	IF	CITATIONS
55	Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 159-164.	2.6	40
56	Fabrication of Segmented Au/Co/Au Nanowires: Insights in the Quality of Co/Au Junctions. ACS Applied Materials & Interfaces, 2014, 6, 14583-14589.	4.0	40
57	Developing plating baths for the production of cobalt–molybdenum films. Surface and Coatings Technology, 2005, 197, 238-246.	2.2	39
58	Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co–Ni films. Materials Chemistry and Physics, 2011, 130, 1380-1386.	2.0	39
59	Nanocrystals as Very Active Interfaces:  Ultrasensitive Room-Temperature Ozone Sensors with In ₂ O ₃ Nanocrystals Prepared by a Low-Temperature Solâ~Gel Process in a Coordinating Environment. Journal of Physical Chemistry C, 2007, 111, 13967-13971.	1.5	38
60	Nanocasting of Mesoporous Inâ€TM (TM = Co, Fe, Mn) Oxides: Towards 3D Dilutedâ€Oxide Magnetic Semiconductor Architectures. Advanced Functional Materials, 2013, 23, 900-911.	7.8	38
61	EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis. Ultramicroscopy, 2012, 122, 12-18.	0.8	37
62	Novel Fe–Mn–Si–Pd alloys: insights into mechanical, magnetic, corrosion resistance and biocompatibility performances. Journal of Materials Chemistry B, 2016, 4, 6402-6412.	2.9	37
63	Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. Journal of Alloys and Compounds, 2017, 724, 1046-1056.	2.8	37
64	Capping Ligand Effects on the Amorphous-to-Crystalline Transition of CdSe Nanoparticles. Langmuir, 2008, 24, 11182-11188.	1.6	36
65	Plasma-activated multi-walled carbon nanotube–polystyrene composite substrates for biosensing. Nanotechnology, 2009, 20, 335501.	1.3	36
66	Monolayered versus multilayered electroless NiP coatings: Impact of the plating approach on the microstructure, mechanical and corrosion properties of the coatings. Surface and Coatings Technology, 2019, 368, 138-146.	2.2	35
67	Structural, magnetic and corrosion properties of electrodeposited cobalt–nickel–molybdenum alloys. Electrochemistry Communications, 2005, 7, 275-281.	2.3	34
68	An approach to the first stages of cobalt–nickel–molybdenum electrodeposition in sulphate–citrate medium. Journal of Electroanalytical Chemistry, 2005, 580, 222-230.	1.9	33
69	3D hierarchically porous Cu–BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties. Nanoscale, 2013, 5, 12542.	2.8	33
70	Microstructures of soft-magnetic cobalt–molybdenum alloy obtained by electrodeposition on seed layer/silicon substrates. Electrochemistry Communications, 2004, 6, 853-859.	2.3	32
71	Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and <i>in vivo</i> animal tests. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 836-845.	1.6	32
72	Intermediate molybdenum oxides involved in binary and ternary induced electrodeposition. Journal of Electroanalytical Chemistry, 2005, 580, 238-244.	1.9	31

#	Article	IF	CITATIONS
73	Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass. Intermetallics, 2012, 28, 149-155.	1.8	31
74	Molybdenum alloy electrodeposits for magnetic actuation. Electrochimica Acta, 2006, 51, 3214-3222.	2.6	30
75	On the structural characterization of BaTiO3–CuO as CO2 sensing material. Sensors and Actuators B: Chemical, 2008, 133, 315-320.	4.0	30
76	Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications. Materials, 2013, 6, 4930-4945.	1.3	30
77	Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surface and Coatings Technology, 2018, 349, 745-751.	2.2	29
78	Recent advances in catalyst materials for proton exchange membrane fuel cells. APL Materials, 2021, 9, 040702.	2.2	28
79	Structurally and mechanically tunable molybdenum oxide films and patterned submicrometer structures by electrodeposition. Electrochimica Acta, 2015, 173, 705-714.	2.6	27
80	Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics. ACS Applied Materials & Interfaces, 2018, 10, 44897-44905.	4.0	26
81	Chemical State, Distribution, and Role of Ti- and Nb-Based Additives on the Ca(BH ₄) ₂ System. Journal of Physical Chemistry C, 2013, 117, 4394-4403.	1.5	25
82	On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg ₇₂ Zn ₂₃ Ca ₅ and crystalline Mg ₇₀ Zn ₂₃ Ca ₅ Pd ₂₃ alloys as temporary implant materials. Journal of Biomedical Materials Research - Part A, 2013, 101A, 502-517.	2.1	24
83	Electric Field Control of Magnetism in Iron Oxide Nanoporous Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 37338-37346.	4.0	24
84	Evaluation of the anatase/rutile phase composition influence on the photocatalytic performances of mesoporous TiO2 powders. International Journal of Hydrogen Energy, 2015, 40, 14483-14491.	3.8	23
85	Tailoring Staircase-like Hysteresis Loops in Electrodeposited Trisegmented Magnetic Nanowires: a Strategy toward Minimization of Interwire Interactions. ACS Applied Materials & Interfaces, 2016, 8, 4109-4117.	4.0	23
86	Mechanical behaviour of brushite and hydroxyapatite coatings electrodeposited on newly developed FeMnSiPd alloys. Journal of Alloys and Compounds, 2017, 729, 231-239.	2.8	23
87	Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary. ACS Applied Materials & Interfaces, 2019, 11, 3214-3223.	4.0	23
88	Toward uniform electrodeposition of magnetic Co-W mesowires arrays: direct versus pulse current deposition. Electrochimica Acta, 2016, 188, 589-601.	2.6	22
89	Advances in Applications of Industrial Biomaterials. , 2017, , .		22
90	Micelleâ€Assisted Electrodeposition of Mesoporous Fe–Pt Smooth Thin Films and their Electrocatalytic Activity towards the Hydrogen Evolution Reaction. ChemSusChem, 2018, 11, 367-375.	3.6	22

#	Article	IF	CITATIONS
91	The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry Communications, 2011, 13, 973-976.	2.3	21
92	Hydrogen storage in 2NaBH4+MgH2 mixtures: Destabilization by additives and nanoconfinement. Journal of Alloys and Compounds, 2012, 536, S236-S240.	2.8	21
93	Reversible, Electric-Field Induced Magneto-Ionic Control of Magnetism in Mesoporous Cobalt Ferrite Thin Films. Scientific Reports, 2019, 9, 10804.	1.6	21
94	Electrodeposition of cobalt–yttrium hydroxide/oxide nanocomposite films from particle-free aqueous baths containing chloride salts. Electrochimica Acta, 2011, 56, 5142-5150.	2.6	20
95	Modeling the collective magnetic behavior of highly-packed arrays of multi-segmented nanowires. New Journal of Physics, 2016, 18, 013026.	1.2	20
96	Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes. Nanotechnology, 2011, 22, 275713.	1.3	19
97	Structural and mechanical modifications induced on Cu47.5Zr47.5Al5 metallic glass by surface laser treatments. Applied Surface Science, 2014, 290, 188-193.	3.1	19
98	In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glass. Journal of Materials Science: Materials in Medicine, 2014, 25, 163-172.	1.7	19
99	Evaporation-induced self-assembly synthesis of Ni-doped mesoporous SnO ₂ thin films with tunable room temperature magnetic properties. Journal of Materials Chemistry C, 2017, 5, 5517-5527.	2.7	19
100	Templateâ€Assisted Electroforming of Fully Semiâ€Hardâ€Magnetic Helical Microactuators. Advanced Engineering Materials, 2018, 20, 1800179.	1.6	19
101	Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts In Vitro Biocompatibility. PLoS ONE, 2016, 11, e0156644.	1.1	19
102	Gadolinium doped Ceria nanocrystals synthesized from mesoporous silica. Journal of Nanoparticle Research, 2008, 10, 369-375.	0.8	18
103	Ammonia-free infiltration of NaBH4 into highly-ordered mesoporous silica and carbon matrices for hydrogen storage. Journal of Alloys and Compounds, 2013, 580, S309-S312.	2.8	18
104	Mesoporous Oxide-Diluted Magnetic Semiconductors Prepared by Co Implantation in Nanocast 3D-Ordered In ₂ O _{3–<i>y</i>} Materials. Journal of Physical Chemistry C, 2013, 117, 17084-17091.	1.5	18
105	Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass. Applied Physics Letters, 2013, 103, 211907.	1.5	18
106	The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study. Materials, 2016, 9, 355.	1.3	18
107	A facile co-precipitation synthesis of heterostructured ZrO2 ZnO nanoparticles as efficient photocatalysts for wastewater treatment. Journal of Materials Science, 2017, 52, 13779-13789.	1.7	18
108	Micelle-assisted electrodeposition of highly mesoporous Fe–Pt nodular films with soft magnetic and electrocatalytic properties. Nanoscale, 2017, 9, 18081-18093.	2.8	17

#	Article	IF	CITATIONS
109	Metal Oxide Nanocrystals from the Injection of Metal Oxide Sols in a Coordinating Environment: Principles, Applicability, and Investigation of the Synthesis Variables in the Case Study of CeO ₂ and SnO ₂ . Chemistry of Materials, 2009, 21, 862-870.	3.2	16
110	Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction. Electrochimica Acta, 2016, 194, 263-275.	2.6	16
111	Nanocasting synthesis of mesoporous SnO ₂ with a tunable ferromagnetic response through Ni loading. RSC Advances, 2016, 6, 104799-104807.	1.7	16
112	Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films. Nanoscale, 2016, 8, 1344-1351.	2.8	16
113	Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids. Astrophysical Journal, 2017, 835, 157.	1.6	16
114	Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezoresponse. Materials and Design, 2017, 133, 54-61.	3.3	16
115	Tunable Magnetism in Nanoporous CuNi Alloys by Reversible Voltageâ€Driven Elementâ€Selective Redox Processes. Small, 2018, 14, e1704396.	5.2	16
116	Enhanced mechanical properties and microstructural modifications in electrodeposited Fe-W alloys through controlled heat treatments. Surface and Coatings Technology, 2018, 350, 20-30.	2.2	16
117	3D Printing of Thermoplasticâ€Bonded Soft―and Hardâ€Magnetic Composites: Magnetically Tuneable Architectures and Functional Devices. Advanced Intelligent Systems, 2019, 1, 1900069.	3.3	16
118	Synthesis and structural properties of ultra-small oxide (TiO2, ZrO2, SnO2) nanoparticles prepared by decomposition of metal alkoxides. Materials Chemistry and Physics, 2010, 124, 809-815.	2.0	15
119	Parametric aqueous electrodeposition study and characterization of Fe–Cu films. Electrochimica Acta, 2017, 231, 739-748.	2.6	15
120	Coercivity Modulation in Fe–Cu Pseudoâ€Ordered Porous Thin Films Controlled by an Applied Voltage: A Sustainable, Energyâ€Efficient Approach to Magnetoelectrically Driven Materials. Advanced Science, 2018, 5, 1800499.	5.6	15
121	Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr–Cu–Al bulk metallic glass composites. Science and Technology of Advanced Materials, 2014, 15, 035015.	2.8	14
122	â€~Green' Cr(<scp>iii</scp>)–glycine electrolyte for the production of FeCrNi coatings: electrodeposition mechanisms and role of by-products in terms of coating composition and microstructure. RSC Advances, 2019, 9, 25762-25775.	1.7	14
123	Extracting deposition parameters for cobalt–molybdenum alloy from potentiostatic current transients. Physical Chemistry Chemical Physics, 2004, 6, 1340-1344.	1.3	13
124	Electrodeposition of cobalt based alloys for MEMS applications. Transactions of the Institute of Metal Finishing, 2005, 83, 248-254.	0.6	13
125	Influence of the irradiation temperature on the surface structure and physical/chemical properties of Ar ion-irradiated bulk metallic glasses. Journal of Alloys and Compounds, 2014, 610, 118-125.	2.8	13
126	Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An "All-Chemical―Deposition Approach toward 3D Nanoengineered Composite Layers. ACS Applied Materials & Interfaces, 2018, 10, 14877-14885.	4.0	13

#	Article	IF	CITATIONS
127	Inducing surface nanoporosity on Fe-based metallic glass matrix composites by selective dealloying. Materials Characterization, 2019, 153, 46-51.	1.9	13
128	Electrochemical characterisation of multifunctional electrocatalytic mesoporous Ni-Pt thin films in alkaline and acidic media. Electrochimica Acta, 2020, 359, 136952.	2.6	13
129	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3â´`xO4 nanolayers. Nanoscale, 2013, 5, 5561.	2.8	12
130	Nanoporous Fe-Based Alloy Prepared by Selective Dissolution: An Effective Fenton Catalyst for Water Remediation. ACS Omega, 2017, 2, 653-662.	1.6	12
131	Ferromagnetic-like behaviour in bismuth ferrite films prepared by electrodeposition and subsequent heat treatment. RSC Advances, 2017, 7, 32133-32138.	1.7	12
132	Unraveling the Origin of Magnetism in Mesoporous Cu-Doped SnO2 Magnetic Semiconductors. Nanomaterials, 2017, 7, 348.	1.9	12
133	Enhancing Magneto-Ionic Effects in Magnetic Nanostructured Films via Conformal Deposition of Nanolayers with Oxygen Acceptor/Donor Capabilities. ACS Applied Materials & Interfaces, 2020, 12, 14484-14494.	4.0	12
134	Strain gradient mediated magnetoelectricity in Fe-Ga/P(VDF-TrFE) multiferroic bilayers integrated on silicon. Applied Materials Today, 2020, 19, 100579.	2.3	12
135	Ordered arrays of ferromagnetic, compositionally graded Cu1â^'xNix alloy nanopillars prepared by template-assisted electrodeposition. Journal of Materials Chemistry C, 2013, 1, 7215.	2.7	11
136	One-pot electrosynthesis of multi-layered magnetic metallopolymer nanocomposites. Nanoscale, 2014, 6, 4683.	2.8	11
137	Nanomechanical behaviour of open-cell nanoporous metals: Homogeneous versus thickness-dependent porosity. Mechanics of Materials, 2016, 100, 167-174.	1.7	11
138	Electron Microscopy Characterization of Electrodeposited Homogeneous and Multilayered Nanowires in the Ni-Co-Cu System. Journal of the Electrochemical Society, 2018, 165, D536-D542.	1.3	11
139	Growth of CdSe Nanocrystals by a Catalytic Redox Activation of Ostwald Ripening:  A Case Study of the Concept of Traveling Solubility Perturbation. Chemistry of Materials, 2007, 19, 4919-4924.	3.2	10
140	Assessment of catalyst particle removal in multi-wall carbon nanotubes by highly sensitive magnetic measurements. Carbon, 2009, 47, 758-763.	5.4	10
141	Anodic formation of self-organized Ti(Nb,Sn) oxide nanotube arrays with tuneable aspect ratio and size distribution. Electrochemistry Communications, 2013, 33, 84-87.	2.3	10
142	Thermal treatment effect on the mechanical, tribological and corrosion properties of Ni–W alloy obtained by direct and pulse plating electrodeposition. Transactions of the Institute of Metal Finishing, 2017, 95, 31-38.	0.6	10
143	Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates. Materials, 2018, 11, 280.	1.3	10
144	Full Optimization of an Electroless Nickel Solution: Boosting the Performance of Low-Phosphorous Coatings. Materials, 2021, 14, 1501.	1.3	10

#	Article	IF	CITATIONS
145	High-performance electrodeposited Co-rich CoNiReP permanent magnets. Electrochimica Acta, 2011, 56, 8979-8988.	2.6	9
146	Influence of the preparation method on the morphology of templated NiCo2O4 spinel. Journal of Nanoparticle Research, 2011, 13, 3671-3681.	0.8	9
147	Self-organized spatio-temporal micropatterning in ferromagnetic Co–In films. Journal of Materials Chemistry C, 2014, 2, 8259-8269.	2.7	9
148	Mobility-Enhancing Coatings for Vitreoretinal Surgical Devices: Hydrophilic and Enzymatic Coatings Investigated by Microrheology. ACS Applied Materials & Interfaces, 2015, 7, 22018-22028.	4.0	9
149	Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks. Scientific Reports, 2016, 6, 30398.	1.6	9
150	Electrochemical Synthesis of Bismuth Particles: Tuning Particle Shape through Substrate Type within a Narrow Potential Window. Materials, 2017, 10, 43.	1.3	9
151	Cytocompatibility assessment of Tiâ€Zrâ€Pdâ€Siâ€(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 834-842.	1.6	9
152	Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials. , 2018, , 225-280.		9
153	Electrodeposition of Nanocrystalline Fe-P Coatings: Influence of Bath Temperature and Clycine Concentration on Structure, Mechanical and Corrosion Behavior. Coatings, 2019, 9, 189.	1.2	9
154	A comparative study of the influence of the deposition technique (electrodeposition versus) Tj ETQq0 0 0 rgBT /0 Materials, 2020, 21, 424-434.	Dverlock 1 2.8	0 Tf 50 387 ⁻ 9
155	Tailoring magnetic and mechanical properties of mesoporous single-phase Ni–Pt films by electrodeposition. Nanoscale, 2020, 12, 7749-7758.	2.8	9
156	ZnO Nanosheet-Coated TiZrPdSiNb Alloy as a Piezoelectric Hybrid Material for Self-Stimulating Orthopedic Implants. Biomedicines, 2021, 9, 352.	1.4	9
157	Nanorobotic drug delivery. Materials Today, 2011, 14, 54.	8.3	8
158	White-light photoluminescence and photoactivation in cadmium sulfide embedded in mesoporous silicon dioxide templates studied by confocal laser scanning microscopy. Journal of Colloid and Interface Science, 2013, 407, 47-59.	5.0	8
159	Tailoring the physical properties of electrodeposited CoNiReP alloys with large Re content by direct, pulse, and reverse pulse current techniques. Electrochimica Acta, 2013, 96, 43-50.	2.6	8
160	Nanostructured Tiâ€Zrâ€Pdâ€Siâ€(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1569-1579.	1.6	8
161	Toward Robust Segmented Nanowires: Understanding the Impact of Crystallographic Texture on the Quality of Segment Interfaces in Magnetic Metallic Nanowires. Advanced Materials Interfaces, 2016, 3, 1600336.	1.9	8
162	Fabrication of sustainable hydrophobic and oleophilic pseudo-ordered macroporous Fe–Cu films with tunable composition and pore size via electrodeposition through colloidal templates. Applied Materials Today, 2018, 12, 1-8.	2.3	8

#	Article	IF	CITATIONS
163	Large magnetoelectric effects mediated by electric-field-driven nanoscale phase transformations in sputtered (nanoparticulate) and electrochemically dealloyed (nanoporous) Fe–Cu films. Nanoscale, 2018, 10, 14570-14578.	2.8	8
164	The electrochemical manipulation of apolar solvent drops in aqueous electrolytes by altering the surface polarity of polypyrrole architectures. Electrochemistry Communications, 2015, 54, 32-35.	2.3	7
165	Mid-term meeting of SELECTA: a European Training Network on smart electrodeposited alloys for environmentally sustainable applications. Transactions of the Institute of Metal Finishing, 2017, 95, 124-125.	0.6	7
166	Structural and Magnetic Properties of Fe _{<i>x</i>} Cu _{1–<i>x</i>} Sputtered Thin Films Electrochemically Treated To Create Nanoporosity for High-Surface-Area Magnetic Components. ACS Applied Nano Materials, 2018, 1, 1675-1682.	2.4	7
167	Nanocrystalline Electrodeposited Fe-W/Al2O3 Composites: Effect of Alumina Sub-microparticles on the Mechanical, Tribological, and Corrosion Properties. Frontiers in Chemistry, 2019, 7, 241.	1.8	7
168	Impact of the multilayer approach on the tribocorrosion behaviour of nanocrystalline electroless nickel coatings obtained by different plating modes. Wear, 2020, 456-457, 203384.	1.5	7
169	Magnetically and chemically propelled nanowire-based swimmers. , 2020, , 777-799.		7
170	Mechanical, magnetic and magnetostrictive properties of porous Fe-Ga films prepared by electrodeposition. Materials and Design, 2021, 208, 109915.	3.3	7
171	Deformation and fracture behavior of corrosion-resistant, potentially biocompatible, Ti40Zr10Cu38Pd12 bulk metallic glass. Journal of Alloys and Compounds, 2012, 536, S74-S77.	2.8	6
172	New binuclear copper(<scp>ii</scp>) coordination polymer based on mixed pyrazolic and oxalate ligands: structural characterization and mechanical properties. RSC Advances, 2015, 5, 32369-32375.	1.7	6
173	Nanomechanics on FGF-2 and Heparin Reveal Slip Bond Characteristics with pH Dependency. ACS Biomaterials Science and Engineering, 2017, 3, 1000-1007.	2.6	6
174	Functional macroporous iron-phosphorous films by electrodeposition on colloidal crystal templates. Electrochimica Acta, 2019, 313, 211-222.	2.6	6
175	Electroless copper plating obtained by Selective Metallisation using a Magnetic Field (SMMF). Electrochimica Acta, 2021, 389, 138763.	2.6	5
176	Chelyabinsk Meteorite as a Proxy for Studying the Properties of Potentially Hazardous Asteroids and Impact Deflection Strategies. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 219-241.	0.3	5
177	Nanoscale phase separation in coated Ag nanoparticles. Nanoscale, 2011, 3, 4220.	2.8	4
178	Highly ordered mesoporous magnesium niobate high-l̂º dielectric ceramic: synthesis, structural/mechanical characterization and thermal stability. Journal of Materials Chemistry C, 2013, 1, 4948.	2.7	4
179	Cobalt–nickel microcantilevers for biosensing. Journal of Intelligent Material Systems and Structures, 2013, 24, 2215-2220.	1.4	4
180	Nanomechanical behavior of 3D porous metal–ceramic nanocomposite Bi/Bi2O3 films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626. 150-158.	2.6	4

#	Article	IF	CITATIONS
181	Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties. Science and Technology of Advanced Materials, 2016, 17, 177-187.	2.8	4
182	Conformal oxide nanocoatings on electrodeposited 3D porous Ni films by atomic layer deposition. Journal of Materials Chemistry C, 2016, 4, 8655-8662.	2.7	4
183	The order of addition and time matters: Impact of electrolyte processing on micelle-assisted electrosynthesis of mesoporous alloys. Electrochimica Acta, 2020, 358, 136940.	2.6	4
184	Effect of Thermally-Induced Surface Oxidation on the Mechanical Properties and Corrosion Resistance of Zr60Cu25Al10Fe5 Bulk Metallic Glass. Science of Advanced Materials, 2014, 6, 27-36.	0.1	4
185	Electrochemically Fabricated Surface-Mesostructured CuNi Bimetallic Catalysts for Hydrogen Production in Alkaline Media. Nanomaterials, 2022, 12, 118.	1.9	4
186	Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants. , 0, , .		3
187	Design of New N-polyether Pyrazole Derived Ligands: Synthesis, Characterization and Regioselectivity. Current Organic Synthesis, 2014, 11, 149-155.	0.7	3
188	Lithography: Hybrid Helical Magnetic Microrobots Obtained by 3D Template-Assisted Electrodeposition (Small 7/2014). Small, 2014, 10, 1234-1234.	5.2	3
189	The biocompatibility and anti-biofouling properties of magnetic core–multishell Fe@C NWs–AAO nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 13274-13279.	1.3	3
190	Frontiers in Mesoporous Nanomaterials. Nanomaterials, 2016, 6, 15.	1.9	3
191	Electron energy-loss spectroscopic tomography of FexCo(3â^'x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions. Analyst, The, 2016, 141, 4968-4972.	1.7	3
192	Dually actuated atomic force microscope with miniaturized magnetic bead-actuators for single-molecule force measurements. Nanoscale Horizons, 2016, 1, 488-495.	4.1	3
193	e-MINDS: A networking COST initiative for surface finishers and corrosion scientists working in micro- and nanosystems technology. Transactions of the Institute of Metal Finishing, 2016, 94, 60-62.	0.6	3
194	Single step electrosynthesis of NiMnGa alloys. Electrochimica Acta, 2016, 204, 199-205.	2.6	3
195	Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation. Applied Surface Science, 2016, 371, 399-406.	3.1	3
196	Unraveling the properties of sharply defined submicron scale FeCu and FePd magnetic structures fabricated by electrodeposition onto electron-beam-lithographed substrates. Materials and Design, 2020, 193, 108826.	3.3	3
197	Exploiting electrolyte confinement effects for the electrosynthesis of two-engine micromachines. Applied Materials Today, 2020, 19, 100629.	2.3	3
198	Electroless Palladium-Coated Polymer Scaffolds for Electrical Stimulation of Osteoblast-Like Saos-2 Cells. International Journal of Molecular Sciences, 2021, 22, 528.	1.8	3

#	Article	IF	CITATIONS
199	Magneto-ionic suppression of magnetic vortices. Science and Technology of Advanced Materials, 2021, 22, 972-984.	2.8	3
200	Oxygen reduction reaction and proton exchange membrane fuel cell performance of pulse electrodeposited Pt–Ni and Pt–Ni–Mo(O) nanoparticles. Materials Today Energy, 2022, 27, 101023.	2.5	3
201	Cross-sectioning spatio-temporal Co-In electrodeposits: Disclosing a magnetically-patterned nanolaminated structure. Materials and Design, 2017, 114, 202-207.	3.3	2
202	Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs. Nanomaterials, 2017, 7, 155.	1.9	2
203	e-MINDs: the COST Action on electrodeposition and corrosion of micro- and nanodevices that sprouted in 2015 and bore fruit. Transactions of the Institute of Metal Finishing, 2019, 97, 171-173.	0.6	2
204	Epitaxial Versus Polycrystalline Shape Memory Cu-Al-Ni Thin Films. Coatings, 2019, 9, 308.	1.2	2
205	Smart Cellulose Composites: Advanced Applications and Properties Prediction Using Machine Learning. , 2021, , 527-538.		2
206	The role of oxygen vacancies in the sensing properties of SnO <inf>2</inf> nanocrystals. , 2008, , .		1
207	Magnetic Actuation: Voltageâ€Induced Coercivity Reduction in Nanoporous Alloy Films: A Boost toward Energyâ€Efficient Magnetic Actuation (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
208	Selective Metallization of Non-Conductive Materials by Patterning of Catalytic Particles and the Application of a Gradient Magnetic Field. ECS Transactions, 2018, 85, 69-78.	0.3	1
209	Selective electroless plating on non-conductive materials by applying a gradient of magnetic field. , 2020, , .		1
210	Oxide-Matrix Based Nanocomposite Materials for Advanced Magnetic and Optical Functionalities. , 0, , .		1
211	Lightweight macroporous Co-Pt electrodeposited films with semi-hard-magnetic properties. Materials and Design, 2022, 213, 110369.	3.3	1
212	Mesostructured WO3 as a sensing material for NO2 detection. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	0
213	Iron Nanowires: Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation (Adv. Funct. Mater. 7/2013). Advanced Functional Materials, 2013, 23, 782-782.	7.8	0
214	Ordered Mesoporous Nanomaterials. Nanomaterials, 2014, 4, 902-904.	1.9	0
215	Magnetic Nanowires: Toward Robust Segmented Nanowires: Understanding the Impact of Crystallographic Texture on the Quality of Segment Interfaces in Magnetic Metallic Nanowires (Adv.) Tj ETQq1 I	1 0. 78 4314	1 rgBT /Overl
216	Tri-segmented magnetic nanowires with antiparallel alignment: Suitable platforms for biomedical		0

applications with minimized agglomeration?., 2017, ...

#	Article	IF	CITATIONS
217	Progress Beyond the State-of-the-Art in the Field of Metallic Materials for Bioimplant Applications. , 2018, , 25-46.		0
218	The European Training Network SELECTA reaches its end. Transactions of the Institute of Metal Finishing, 2019, 97, 3-4.	0.6	0
219	Two Different Structures of Crystalline Mesoporous Indium Oxide Obtained by Nanocasting Process. , 2008, , 311-312.		0
220	Nanoscale Ni-Mo-Pt Alloy Catalyst with Tuneable Composition for Hydrogen Economy: Electrosynthesis and Characterisation. ECS Meeting Abstracts, 2020, MA2020-02, 1402-1402.	0.0	0