
Felix Kaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/665475/publications.pdf Version: 2024-02-01

FELLY KASDAD

#	Article	IF	CITATIONS
1	Bioactive Secondary Metabolites from <i>Bacillus subtilis</i> : A Comprehensive Review. Journal of Natural Products, 2019, 82, 2038-2053.	3.0	161
2	Route efficiency assessment and review of the synthesis of β-nucleosides <i>via N</i> -glycosylation of nucleobases. Green Chemistry, 2021, 23, 37-50.	9.0	33
3	Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study. Mediators of Inflammation, 2016, 2016, 1-6.	3.0	31
4	General Principles for Yield Optimization of Nucleoside Phosphorylase atalyzed Transglycosylations. ChemBioChem, 2020, 21, 1428-1432.	2.6	24
5	Thermodynamic Reaction Control of Nucleoside Phosphorolysis. Advanced Synthesis and Catalysis, 2020, 362, 867-876.	4.3	22
6	A UV/Vis Spectroscopy-Based Assay for Monitoring of Transformations Between Nucleosides and Nucleobases. Methods and Protocols, 2019, 2, 60.	2.0	21
7	Modular Enzymatic Cascade Synthesis of Nucleotides Using a (d)ATP Regeneration System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 854.	4.1	17
8	Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations. Molecules, 2020, 25, 934.	3.8	17
9	Spectral Unmixingâ€Based Reaction Monitoring of Transformations between Nucleosides and Nucleobases. ChemBioChem, 2020, 21, 2604-2610.	2.6	14
10	Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase. Processes, 2019, 7, 380.	2.8	12
11	The Peculiar Case of the Hyperâ€ŧhermostable Pyrimidine Nucleoside Phosphorylase from <i>Thermus thermophilus</i> **. ChemBioChem, 2021, 22, 1385-1390.	2.6	12
12	Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases. ACS Catalysis, 2021, 11, 10830-10835.	11.2	11
13	Optimized Biocatalytic Synthesis of 2‧elenopyrimidine Nucleosides by Transglycosylation**. ChemBioChem, 2021, 22, 2002-2009.	2.6	10
14	Kinetic Analysis of the Hydrolysis of Pentoseâ€lâ€phosphates through Apparent Nucleoside Phosphorolysis Equilibrium Shifts**. ChemPhysChem, 2021, 22, 283-287.	2.1	7
15	Thermostable adenosine 5′-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies. Scientific Reports, 2021, 11, 16880.	3.3	7
16	UV-Spectroscopic Detection of (Pyro-)Phosphate with the PUB Module. Analytical Chemistry, 2022, 94, 3432-3435.	6.5	6
17	pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from <i>Geobacillus thermoglucosidasius</i> . Biochemistry, 2021, 60, 1573-1577.	2.5	5
18	Coloring Chemistry—How Mindful Color Choices Improve Chemical Communication. Angewandte Chemie - International Edition, 2022, 61, e202114910.	13.8	4

#	Article	IF	CITATIONS
19	Two-Phase Biocatalysis in Microfluidic Droplets. Biosensors, 2021, 11, 407.	4.7	3
20	Alternative Assay Reagents for UV-Spectroscopic Detection of (Pyro-)Phosphate with the PUB Module. Analytical Chemistry, 2022, 94, 8132-8135.	6.5	1
21	Coloring Chemistry – Wie eine bewusste Farbwahl die chemische Kommunikation verbessert. Angewandte Chemie, 2022, 134, .	2.0	0