List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654712/publications.pdf Version: 2024-02-01

		293460	286692
213	2,273	24	43
papers	citations	h-index	g-index
223	223	223	4074
all docs	docs citations	times ranked	citing authors

CUNDA L GEORG

#	Article	IF	CITATIONS
1	Steroidal Antagonists of Progesterone- and Prostaglandin E ₁ -Induced Activation of the Cation Channel of Sperm. Molecular Pharmacology, 2022, 101, 56-67.	1.0	7
2	Dihydropyridine Lactam Analogs Targeting BET Bromodomains. ChemMedChem, 2022, 17, e202100407.	1.6	1
3	Discovery and Characterization of Multiple Classes of Human CatSper Blockers. ChemMedChem, 2022, 17, .	1.6	13
4	Cytotoxicity of phenylpironetin analogs and the metabolic fate of pironetin and phenylpironetin. Bioorganic Chemistry, 2022, 125, 105915.	2.0	2
5	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
6	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
7	Tetrahydroindazole inhibitors of CDK2/cyclin complexes. European Journal of Medicinal Chemistry, 2021, 214, 113232.	2.6	5
8	TSSK3, a novel target for male contraception, is required for spermiogenesis. Molecular Reproduction and Development, 2021, 88, 718-730.	1.0	12
9	Epigenetics 2.0: Special Issue on Epigenetics—Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 12129-12130.	2.9	1
10	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
11	A special issue on contraceptive development: past, present, and future. Biology of Reproduction, 2020, 103, 145-146.	1.2	3
12	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
13	Retinoic acid receptor antagonists for male contraception: current statusâ€. Biology of Reproduction, 2020, 103, 390-399.	1.2	21
14	New Horizons in Drug Discovery - Understanding and Advancing Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7921-7922.	2.9	4
15	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
16	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
17	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
18	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0

#	Article	IF	CITATIONS
19	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	Ο
20	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	Ο
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	Ο
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
32	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	Ο
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
36	Advances toward COVID-19 Therapies Special Issue Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 15073-15074.	2.9	1

#	Article	IF	CITATIONS
37	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		Ο
38	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
39	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
40	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
41	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	Ο
42	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
43	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
44	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
45	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
46	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
47	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
48	DFG-1 Binding: A New Residue for Developing Selective Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 10221-10223.	2.9	1
49	The 2020 Nobel Prize in Physiology or Medicine. Journal of Medicinal Chemistry, 2020, 63, 13197-13204.	2.9	5
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	Ο
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0

#	Article	IF	CITATIONS
55	Introduction: Drug Metabolism and Toxicology Special Issue. Journal of Medicinal Chemistry, 2020, 63, 6249-6250.	2.9	2
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
61	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
62	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
63	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
64	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
65	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
66	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
67	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
68	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
69	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
70	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
71	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
72	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0

5

#	Article	IF	CITATIONS
73	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	Ο
74	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
75	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
76	Review of rationale and progress toward targeting cyclin-dependent kinase 2 (CDK2) for male contraceptionâ€. Biology of Reproduction, 2020, 103, 357-367.	1.2	12
77	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
78	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
79	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
80	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
81	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
82	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
83	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
84	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
85	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
86	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
87	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
88	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
89	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
90	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0

#	Article	IF	CITATIONS
91	Artificial Intelligence in Drug Discovery: Into the Great Wide Open. Journal of Medicinal Chemistry, 2020, 63, 8651-8652.	2.9	40
92	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
93	Development of WEE2 kinase inhibitors as novel non-hormonal female contraceptives that target meiosisâ€. Biology of Reproduction, 2020, 103, 368-377.	1.2	7
94	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
96	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
99	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
100	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
101	The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraceptionâ€. Biology of Reproduction, 2020, 103, 343-356.	1.2	23
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
103	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
106	BET proteins: Investigating BRDT as a potential target for male contraception. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126958.	1.0	11
107	Diversity-Oriented Library Synthesis from Steviol and Isosteviol-Derived Scaffolds. ACS Combinatorial Science, 2020, 22, 150-155.	3.8	4
108	Women in Medicinal Chemistry: Ad Maiora!. Journal of Medicinal Chemistry, 2020, 63, 1777-1778.	2.9	3

#	Article	IF	CITATIONS
109	N-Butyldeoxygalactonojirimycin Induces Reversible Infertility in Male CD Rats. International Journal of Molecular Sciences, 2020, 21, 301.	1.8	7
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	Ο
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	Ο
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
131	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
132	Cooperativity Between Orthosteric Inhibitors and Allosteric Inhibitor 8-Anilino-1-Naphthalene Sulfonic Acid (ANS) in Cyclin-Dependent Kinase 2. ACS Chemical Biology, 2020, 15, 1759-1764.	1.6	9
133	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
134	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
135	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
136	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
137	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
138	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
139	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
140	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
141	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	Ο
142	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
143	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
144	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1

9

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
146	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
147	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	Ο
148	Synthesis and Spectral Properties of 8-Anilinonaphthalene-1-sulfonic Acid (ANS) Derivatives Prepared by Microwave-Assisted Copper(0)-Catalyzed Ullmann Reaction. ACS Omega, 2019, 4, 18472-18477.	1.6	15
149	The anti-parasitic agent suramin and several of its analogues are inhibitors of the DNA binding protein Mcm10. Open Biology, 2019, 9, 190117.	1.5	15
150	Identification of the Metabolic Profile of the α-Tubulin-Binding Natural Product (â^)–Pironetin. Journal of Medicinal Chemistry, 2019, 62, 1684-1689.	2.9	11
151	Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1865-1873.	1.0	46
152	Intranasal Coadministration of a Diazepam Prodrug with a Converting Enzyme Results in Rapid Absorption of Diazepam in Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 796-805.	1.3	8
153	Women in Medicinal Chemistry Special Issue Call for Papers. Journal of Medicinal Chemistry, 2019, 62, 3783-3783.	2.9	6
154	A Message from the Editors-in-Chief. Journal of Medicinal Chemistry, 2019, 62, 2215-2216.	2.9	0
155	Identification and Screening of Selective WEE2 Inhibitors to Develop Nonâ€Hormonal Contraceptives that Specifically Target Meiosis. ChemistrySelect, 2019, 4, 13363-13369.	0.7	7
156	Syntheses of PDE3A inhibitor ORG9935 and determination of the absolute stereochemistries of its enantiomers by X-ray crystallography. Tetrahedron, 2018, 74, 2769-2774.	1.0	7
157	Allosteric Modulators of Drug Targets Special Issue. Journal of Medicinal Chemistry, 2018, 61, 1381-1381.	2.9	0
158	Design, Synthesis, and in Vitro and in Vivo Evaluation of Ouabain Analogues as Potent and Selective Na,K-ATPase α4 Isoform Inhibitors for Male Contraception. Journal of Medicinal Chemistry, 2018, 61, 1800-1820.	2.9	34
159	Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. ACS Chemical Biology, 2018, 13, 582-590.	1.6	48
160	Synthesis and evaluation of C2 functionalized analogs of the α-tubulin-binding natural product pironetin. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2789-2793.	1.0	6
161	Design, Synthesis, and Characterization of a Fluorescence Polarization Pan-BET Bromodomain Probe. ACS Medicinal Chemistry Letters, 2018, 9, 1223-1229.	1.3	8
162	BRDT Inhibitors for Male Contraceptive Drug Discovery: Current Status. , 2018, , 287-315.		3

10

#	Article	IF	CITATIONS
163	Current Medicinal Chemistry Research in India: Progress and Opportunities. Journal of Medicinal Chemistry, 2017, 60, 1619-1619.	2.9	0
164	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	2.9	113
165	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	5.3	78
166	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	1.7	8
167	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	1.2	8
168	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	2.5	20
169	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	1.3	35
170	Synthesis and Cytotoxicity Evaluation of C4―and C5â€Modified Analogues of the α,βâ€Unsaturated Lactone of Pironetin. ChemMedChem, 2017, 12, 520-528.	1.6	13
171	BET Bromodomain Inhibitors with One-Step Synthesis Discovered from Virtual Screen. Journal of Medicinal Chemistry, 2017, 60, 4805-4817.	2.9	39
172	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	1.8	4
173	Structure–Activity Studies of <i>N</i> â€Butylâ€1â€deoxynojirimycin (<i>N</i> Bâ€DNJ) Analogues: Discovery of Potent and Selective Aminocyclopentitol Inhibitors of GBA1 and GBA2. ChemMedChem, 2017, 12, 1977-1984.	1.6	13
174	Potent Pyrimidine and Pyrrolopyrimidine Inhibitors of Testis‧pecific Serine/Threonine Kinaseâ€2 (TSSK2). ChemMedChem, 2017, 12, 1857-1865.	1.6	19
175	Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chemical Biology, 2017, 24, 1259-1275.e6.	2.5	35
176	Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7863-7875.	2.9	68
177	Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2. Protein Expression and Purification, 2016, 121, 88-96.	0.6	12
178	Enantiospecific Synthesis and Cytotoxicity Evaluation of Oximidineâ€II Analogues. ChemMedChem, 2016, 11, 1600-1616.	1.6	3
179	Chirally Pure Prodrugs and Their Converting Enzymes Lead to High Supersaturation and Rapid Transcellular Permeation of Benzodiazepines. Journal of Pharmaceutical Sciences, 2016, 105, 2365-2371.	1.6	6
180	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2016, 59, 1247-1248.	2.9	20

#	Article	IF	CITATIONS
181	Characterizing the Epothilone Binding Site on β-Tubulin by Photoaffinity Labeling: Identification of β-Tubulin Peptides TARGSQQY and TSRGSQQY as Targets of an Epothilone Photoprobe for Polymerized Tubulin. Journal of Medicinal Chemistry, 2016, 59, 3499-3514.	2.9	18
182	Synthesis of Arylazide―and Diazirine ontaining CrAsHâ€EDT ₂ Photoaffinity Probes. Archiv Der Pharmazie, 2016, 349, 233-241.	2.1	3
183	The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex. ACS Chemical Biology, 2016, 11, 452-459.	1.6	8
184	Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2. Molecules, 2015, 20, 1643-1660.	1.7	12
185	Scalable syntheses of the BET bromodomain inhibitor JQ1. Tetrahedron Letters, 2015, 56, 3454-3457.	0.7	13
186	Regioselective C5-alkylation and C5-methylcarbamate formation of 2,3-dihydro-4-pyridones and C3-alkylation and C3-methylcarbamate formation of 4-(pyrrolidin-1-yl)furan-2(5H)-one. Tetrahedron Letters, 2015, 56, 5874-5877.	0.7	7
187	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2015, 58, 523-524.	2.9	20
188	Water-soluble benzodiazepine prodrug/enzyme combinations for intranasal rescue therapies. Epilepsy and Behavior, 2015, 49, 347-350.	0.9	11
189	Synthesis of Strained 1,3-Diene Macrocycles via Copper-Mediated Castro–Stephens Coupling/Alkyne Reduction Tandem Reactions. Organic Letters, 2015, 17, 3902-3905.	2.4	13
190	Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index. Molecular Pharmaceutics, 2015, 12, 2912-2923.	2.3	8
191	Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts. Journal of Medicinal Chemistry, 2015, 58, 9334-9344.	2.9	59
192	2,3-Dihydropyridin-4(1H)-ones and 3-Aminocyclohex-2-enones: Synthesis, Functionalization, and Applications to Alkaloid Synthesis. Synlett, 2014, 25, 2536-2557.	1.0	20
193	Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid: Proposed Structure of a Castoreum Component. European Journal of Organic Chemistry, 2014, 2014, 3777-3783.	1.2	9
194	Biomimetic Aerobic CH Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5â€Trisubstituted Benzenes. Advanced Synthesis and Catalysis, 2014, 356, 1359-1369.	2.1	14
195	Transition Metalâ€Free Direct Trifluoromethylation of 2,3â€Dihydropyridinâ€4(1 <i>H</i>)â€ones at Room Temperature. Advanced Synthesis and Catalysis, 2014, 356, 3510-3518.	2.1	34
196	Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. Journal of Biomolecular Screening, 2014, 19, 1201-1211.	2.6	24
197	Acetyl-lysine Binding Site of Bromodomain-Containing Protein 4 (BRD4) Interacts with Diverse Kinase Inhibitors. ACS Chemical Biology, 2014, 9, 1160-1171.	1.6	188
198	Rapid Delivery of Diazepam from Supersaturated Solutions Prepared Using Prodrug/Enzyme Mixtures: Toward Intranasal Treatment of Seizure Emergencies. AAPS Journal, 2014, 16, 577-585.	2.2	11

#	Article	IF	CITATIONS
199	The orally active male contraceptive agent H2â€gamendazole interacts with organic anion transporting polypeptides expressed in human hepatocytes (1064.18). FASEB Journal, 2014, 28, .	0.2	1
200	Lithium perchlorate-, acetic anhydride-, and triphenylphosphine-assisted multicomponent syntheses of 4-unsubstituted 2,5-dioxooctahydroquinoline-3-carboxylates and 3-carbonitriles. Tetrahedron, 2013, 69, 9406-9416.	1.0	8
201	Synthesis of Skeletally Diverse and Stereochemically Complex Library Templates Derived from Isosteviol and Steviol. Organic Letters, 2013, 15, 1602-1605.	2.4	37
202	Development of Highly Potent and Selective Diaminothiazole Inhibitors of Cyclin-Dependent Kinases. Journal of Medicinal Chemistry, 2013, 56, 3768-3782.	2.9	73
203	Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains. ACS Chemical Biology, 2013, 8, 2360-2365.	1.6	132
204	Synthesis and Evaluation of Eight- and Four-Membered Iminosugar Analogues as Inhibitors of Testicular Ceramide-Specific Glucosyltransferase, Testicular β-Glucosidase 2, and Other Glycosidases. Journal of Organic Chemistry, 2012, 77, 3082-3098.	1.7	38
205	Discovery of a Potential Allosteric Ligand Binding Site in CDK2. ACS Chemical Biology, 2011, 6, 492-501.	1.6	151
206	Synthesis of Oximidineâ€II by a Copperâ€Mediated Reductive Ene–Yne Macrocyclization. Angewandte Chemi - International Edition, 2011, 50, 7855-7857.	^e 7.2	17
207	Synthesis of 6- and 7-Membered Cyclic Enaminones: Scope and Mechanism. Journal of Organic Chemistry, 2010, 75, 6793-6805.	1.7	60
208	A Novel Potent Indazole Carboxylic Acid Derivative Blocks Spermatogenesis and Is Contraceptive in Rats after a Single Oral Dose1. Biology of Reproduction, 2008, 78, 1127-1138.	1.2	91
209	Gamendazole, an Orally Active Indazole Carboxylic Acid Male Contraceptive Agent, Targets HSP90AB1 (HSP90BETA) and EEF1A1 (eEF1A), and Stimulates II1a Transcription in Rat Sertoli Cells1. Biology of Reproduction, 2008, 78, 1139-1152.	1.2	98
210	Amino Acid-Derived Enaminones:Â A Study in Ring Formation Providing Valuable Asymmetric Synthons. Journal of the American Chemical Society, 2006, 128, 8702-8703.	6.6	74
211	CoMSIA/QSAR Models for Vacuolar (H+) ATPase Inhibition by Selected Benzoate and Benzolactone Species. Letters in Drug Design and Discovery, 2006, 3, 104-107.	0.4	2
212	Formal Total Syntheses of the (â^')-Salicylihalamides A and B Fromd-Glucose andl-Rhamnose. Journal of Organic Chemistry, 2005, 70, 7592-7604.	1.7	19
213	Formal Total Synthesis of (+)-Salicylihalamides A and B:Â A Combined Chiral Pool and RCM Strategy. Journal of Organic Chemistry, 2003, 68, 10030-10039.	1.7	33