
Xingmin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654700/publications.pdf Version: 2024-02-01

XINCMIN SUN

#	Article	IF	CITATIONS
1	Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. Journal of Clinical Microbiology, 2017, 55, 1998-2008.	3.9	191
2	Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 29.	3.9	102
3	Mouse Relapse Model of Clostridium difficile Infection. Infection and Immunity, 2011, 79, 2856-2864.	2.2	92
4	A Chimeric Toxin Vaccine Protects against Primary and Recurrent Clostridium difficile Infection. Infection and Immunity, 2012, 80, 2678-2688.	2.2	81
5	Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorganic and Medicinal Chemistry, 2018, 26, 3573-3579.	3.0	50
6	<i>Clostridioides difficile</i> phage biology and application. FEMS Microbiology Reviews, 2021, 45, .	8.6	43
7	Antibody-Enhanced, Fc Gamma Receptor-Mediated Endocytosis of <i>Clostridium difficile</i> Toxin A. Infection and Immunity, 2009, 77, 2294-2303.	2.2	36
8	Antibiotic Resistance and Toxin Production of Clostridium difficile Isolates from the Hospitalized Patients in a Large Hospital in Florida. Frontiers in Microbiology, 2017, 8, 2584.	3.5	34
9	Cwp22, a novel peptidoglycan crossâ€linking enzyme, plays pleiotropic roles in <i>Clostridioides difficile</i> . Environmental Microbiology, 2019, 21, 3076-3090.	3.8	34
10	Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe, 2016, 37, 85-95.	2.1	28
11	Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products. Frontiers in Microbiology, 2018, 9, 787.	3.5	28
12	Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on <i>Clostridioides difficile</i> . Gut Microbes, 2021, 13, 1979882.	9.8	26
13	Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS ONE, 2019, 14, e0206896.	2.5	24
14	Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive <i>Clostridium difficile</i> strain associated with severe diarrhea. Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	17
15	A Novel Bacteriophage Lysin-Human Defensin Fusion Protein Is Effective in Treatment of Clostridioides difficile Infection in Mice. Frontiers in Microbiology, 2019, 9, 3234.	3.5	17
16	Mechanisms of antibiotic resistance of <i>Clostridioides difficile</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 3077-3090.	3.0	16
17	The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C.Âdifficile strain. Anaerobe, 2015, 36, 49-52.	2.1	15
18	Oral Immunization with Nontoxigenic Clostridium difficile Strains Expressing Chimeric Fragments of TcdA and TcdB Elicits Protective Immunity against C. difficile Infection in Both Mice and Hamsters. Infection and Immunity, 2018, 86, .	2.2	15

XINGMIN SUN

#	Article	IF	CITATIONS
19	A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against <i>Clostridium difficile</i> infection in mice and hamsters. Human Vaccines and Immunotherapeutics, 2015, 11, 2215-2222.	3.3	12
20	A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift. Journal of Microbiology and Biotechnology, 2016, 26, 567-571.	2.1	11
21	Bis yclic Guanidines as a Novel Class of Compounds Potent against Clostridium difficile. ChemMedChem, 2018, 13, 1414-1420.	3.2	11
22	FliW and CsrA Govern Flagellin (FliC) Synthesis and Play Pleiotropic Roles in Virulence and Physiology of Clostridioides difficile R20291. Frontiers in Microbiology, 2021, 12, 735616.	3.5	11
23	TPL2 Is a Key Regulator of Intestinal Inflammation in Clostridium difficile Infection. Infection and Immunity, 2018, 86, .	2.2	10
24	Cwl0971, a novel peptidoglycan hydrolase, plays pleiotropic roles in <i>Clostridioides difficile</i> R20291. Environmental Microbiology, 2021, 23, 5222-5238.	3.8	10
25	Discovery of Cyclic Peptidomimetic Ligands Targeting the Extracellular Domain of EGFR. Journal of Medicinal Chemistry, 2021, 64, 11219-11228.	6.4	9
26	Development of an Effective Nontoxigenic Clostridioides difficile–Based Oral Vaccine against C. difficile Infection. Microbiology Spectrum, 2022, 10, e0026322.	3.0	8
27	Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection. Microbiology Spectrum, 2022, 10, e0178821.	3.0	7
28	Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Frontiers in Immunology, 2018, 9, 2440.	4.8	5
29	Regulatory transcription factors of <i>Clostridioides difficile</i> pathogenesis with a focus on toxin regulation. Critical Reviews in Microbiology, 2023, 49, 334-349.	6.1	4
30	Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Critical Reviews in Biotechnology, 2021, , 1-16.	9.0	3
31	On the Potential Significance of the Intrinsically Disordered Regions in the Clostridiodes difficile Toxins A and B. Current Protein and Peptide Science, 2022, 23, 192-209.	1.4	2