
Shile Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654590/publications.pdf Version: 2024-02-01

SHILF FENC

#	Article	IF	CITATIONS
1	Highly Tough, Stretchable, and Solventâ€Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties. Small, 2022, 18, e2107105.	5.2	32
2	Sensitive chemoselectivity of cellulose nanocrystal films. Cellulose, 2022, 29, 4097-4107.	2.4	2
3	One-Step Fabrication of Hot-Water-Repellent Surfaces. Biomimetics, 2022, 7, 72.	1.5	0
4	Design of flexible multiâ€level topography for enhancing mechanical property. Nano Select, 2021, 2, 541-548.	1.9	12
5	Synchronous oil/water separation and wastewater treatment on a copper-oxide-coated mesh. RSC Advances, 2021, 11, 17740-17745.	1.7	13
6	Multibioinspired JANUS Membranes with Spatial Surface Refreshment for Enhanced Fog Collection. Advanced Materials Interfaces, 2021, 8, 2101212.	1.9	7
7	Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373, 1344-1348.	6.0	223
8	Electromigration-triggered programmable droplet spreading. Chemical Engineering Journal, 2021, 423, 130281.	6.6	4
9	Directional Droplet Transport Mediated by Circular Groove Arrays. Part II: Theory of Effect. Langmuir, 2021, 37, 1948-1953.	1.6	18
10	Selective oxidation of carbon to enhance both tensile strength and interfacial adhesion of carbon fiber. Journal of Adhesion, 2020, 96, 873-882.	1.8	4
11	Droplet Selfâ€Propelling Control on Bioinspired Fiber in Low Temperature and High Humidity Environment. Advanced Materials Interfaces, 2020, 7, 1901183.	1.9	5
12	Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings. Langmuir, 2020, 36, 9608-9615.	1.6	30
13	Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance. ACS Applied Materials & Interfaces, 2020, 12, 25471-25477.	4.0	98
14	Continuous Directional Water Transport on Integrating Tapered Surfaces. Advanced Materials Interfaces, 2020, 7, 2000081.	1.9	32
15	Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Science Advances, 2020, 6, eabb4540.	4.7	164
16	Inhibiting Random Droplet Motion on Hot Surfaces by Engineering Symmetryâ€Breaking Janusâ€Mushroom Structure. Advanced Materials, 2020, 32, e1907999.	11.1	38
17	Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier. Research, 2020, 2020, 6472313.	2.8	16
18	Biological and Engineered Topological Droplet Rectifiers. Advanced Materials, 2019, 31, e1806501.	11.1	113

Shile Feng

#	Article	IF	CITATIONS
19	Designing biomimetic liquid diodes. Soft Matter, 2019, 15, 1902-1915.	1.2	55
20	Integrative Bioinspired Surface with Wettable Patterns and Gradient for Enhancement of Fog Collection. ACS Applied Materials & amp; Interfaces, 2019, 11, 10951-10958.	4.0	56
21	Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. Advanced Functional Materials, 2018, 28, 1800163.	7.8	128
22	An Integrative Mesh with Dual Wettable On–Off Switch ofÂWater/Oil. Advanced Materials Interfaces, 2018, 5, 1701193.	1.9	13
23	Wettability: An Integrative Mesh with Dual Wettable On-Off Switch ofÂWater/Oil (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgBT 1.9	Overlock 1
24	Droplets Manipulated on Photothermal Organogel Surfaces. Advanced Functional Materials, 2018, 28, 1803072.	7.8	121
25	One-step fabricated wettable gradient surface for controlled directional underwater oil-droplet transport. RSC Advances, 2017, 7, 7885-7889.	1.7	8
26	Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire. RSC Advances, 2017, 7, 29606-29610.	1.7	13
27	Controlled droplet transport to target on a high adhesion surface with multi-gradients. Scientific Reports, 2017, 7, 45687.	1.6	61
28	A Strategy of Antifogging: Air-Trapped Hollow Microsphere Nanocomposites. Chemistry of Materials, 2017, 29, 2899-2905.	3.2	31
29	Directional bouncing of droplets on oblique two-tier conical structures. RSC Advances, 2017, 7, 35771-35775.	1.7	20
30	Controlled Smart Anisotropic Unidirectional Spreading of Droplet on a Fibrous Surface. Advanced Materials, 2015, 27, 5057-5062.	11.1	90
31	Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions. Scientific Reports, 2015, 5, 10067.	1.6	22
32	Controlling of Water Collection Ability by an Elasticityâ€Regulated Bioinspired Fiber. Macromolecular Rapid Communications, 2015, 36, 459-464.	2.0	20
33	Controlled droplet transport on a gradient adhesion surface. Chemical Communications, 2015, 51, 6010-6013.	2.2	19
34	Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties. Scientific Reports, 2015, 5, 11209.	1.6	28
35	Droplet Transport on a Nano―and Microstructured Surface with a Wettability Gradient in Lowâ€Temperature or Highâ€Humidity Environments. Advanced Materials Interfaces, 2015, 2, 1500040.	1.9	22
36	Controlled Directional Waterâ€Droplet Spreading on a Highâ€Adhesion Surface. Angewandte Chemie - International Edition, 2014, 53, 6163-6167.	7.2	55

Shile Feng

#	Article	IF	CITATIONS
37	Photo-controlled water gathering on bio-inspired fibers. Soft Matter, 2013, 9, 9294.	1.2	30
38	Water-assisted fabrication of porous bead-on-string fibers. Journal of Materials Chemistry A, 2013, 1, 8363.	5.2	25
39	Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chemical Communications, 2013, 49, 5253.	2.2	53
40	Temperature-controlled directional spreading of water on a surface with high hysteresis. NPG Asia Materials, 2013, 5, e77-e77.	3.8	27