
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654521/publications.pdf Version: 2024-02-01

SANTI NONELI

#	Article	IF	CITATIONS
1	Photoantimicrobials—are we afraid of the light?. Lancet Infectious Diseases, The, 2017, 17, e49-e55.	9.1	498
2	Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green(R). Journal of Experimental Botany, 2006, 57, 1725-1734.	4.8	431
3	Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines. Journal of the American Chemical Society, 1998, 120, 12808-12817.	13.7	276
4	Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green®. Chemical Communications, 2009, , 2920.	4.1	190
5	Two-Photon Absorption in Tetraphenylporphycenes:Â Are Porphycenes Better Candidates than Porphyrins for Providing Optimal Optical Properties for Two-Photon Photodynamic Therapy?. Journal of the American Chemical Society, 2007, 129, 5188-5199.	13.7	189
6	Aromatic ketones as standards for singlet molecular oxygen photosensitization. Time-resolved photoacoustic and near-IR emission studies. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 97, 11-18.	3.9	177
7	Porphycenes: Facts and Prospects in Photodynamic Therapy of Cancer. Current Medicinal Chemistry, 2007, 14, 997-1026.	2.4	177
8	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie - International Edition, 2019, 58, 6311-6315.	13.8	142
9	Distance-Dependent Plasmon-Enhanced Singlet Oxygen Production and Emission for Bacterial Inactivation. Journal of the American Chemical Society, 2016, 138, 2762-2768.	13.7	139
10	Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochemical and Photobiological Sciences, 2008, 7, 1003-1010.	2.9	134
11	Singlet Oxygen Generation by the Genetically Encoded Tag miniSOG. Journal of the American Chemical Society, 2013, 135, 9564-9567.	13.7	126
12	Light and Singlet Oxygen in Plant Defense Against Pathogens:  Phototoxic Phenalenone Phytoalexins. Accounts of Chemical Research, 2006, 39, 293-300.	15.6	120
13	Cationic Porphycenes as Potential Photosensitizers for Antimicrobial Photodynamic Therapy. Journal of Medicinal Chemistry, 2010, 53, 7796-7803.	6.4	117
14	Tuning Photoinduced Energy- and Electron-Transfer Events in Subphthalocyanine-Phthalocyanine Dyads. Chemistry - A European Journal, 2005, 11, 3881-3893.	3.3	112
15	THE PRODUCTION OF SINGLET MOLECULAR OXYGEN BY ZINC(II) PHTHALOCYANINE IN ETHANOL AND IN UNILAMELLAR VESICLES. CHEMICAL QUENCHING AND PHOSPHORESCENCE STUDIES. Photochemistry and Photobiology, 1988, 48, 1-5.	2.5	111
16	THE PHOTOPHYSICAL PROPERTIES OF PORPHYCENES: POTENTIAL PHOTODYNAMIC THERAPY AGENTS*. Photochemistry and Photobiology, 1986, 44, 555-559.	2.5	110
17	Singlet Oxygen Photosensitization by EGFP and its Chromophore HBDI. Biophysical Journal, 2008, 94, 168-172.	O.5	109
18	Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Physical Chemistry Chemical Physics, 2010, 12, 13238.	2.8	105

#	Article	IF	CITATIONS
19	Hybrid Silver Nanocubes for Improved Plasmon-Enhanced Singlet Oxygen Production and Inactivation of Bacteria. Journal of the American Chemical Society, 2019, 141, 684-692.	13.7	100
20	[4] Time-resolved singlet oxygen detection. Methods in Enzymology, 2000, 319, 37-49.	1.0	97
21	Synthesis, Characterization, and Photoinduced Antibacterial Activity of Porphyrin-Type Photosensitizers Conjugated to the Antimicrobial Peptide Apidaecin 1b. Journal of Medicinal Chemistry, 2013, 56, 1052-1063.	6.4	97
22	Photodynamic inactivation of <i>Acinetobacter baumannii</i> using phenothiazinium dyes: In vitro and in vivo studies. Lasers in Surgery and Medicine, 2010, 42, 384-390.	2.1	96
23	Fastest Thermal Isomerization of an Azobenzene for Nanosecond Photoswitching Applications under Physiological Conditions. Angewandte Chemie - International Edition, 2012, 51, 12820-12823.	13.8	95
24	Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging. Journal of Organic Chemistry, 2018, 83, 1185-1195.	3.2	90
25	Kinetics of singlet oxygen photosensitization in human skin fibroblasts. Free Radical Biology and Medicine, 2008, 44, 1926-1934.	2.9	77
26	Singlet oxygen in Escherichia coli: New insights for antimicrobial photodynamic therapy. Free Radical Biology and Medicine, 2010, 49, 770-776.	2.9	76
27	A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: a systematic review. Photochemical and Photobiological Sciences, 2019, 18, 1020-1029.	2.9	75
28	<i>In Vitro</i> Fungicidal Photodynamic Effect of Hypericin on <i>Candida</i> Species ^{â€} . Photochemistry and Photobiology, 2012, 88, 613-619.	2.5	73
29	NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angewandte Chemie - International Edition, 2017, 56, 2885-2888.	13.8	68
30	Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli. Molecules, 2013, 18, 2712-2725.	3.8	64
31	Designing a Green Fluorogenic Protease Reporter by Flipping a Beta Strand of GFP for Imaging Apoptosis in Animals. Journal of the American Chemical Society, 2019, 141, 4526-4530.	13.7	64
32	Synthesis of 2,7,12,17-tetraphenylporphycene (TPPo). First aryl-substituted porphycene for the photodynamic therapy of tumors. Tetrahedron Letters, 1995, 36, 3405-3408.	1.4	63
33	Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements. International Journal of Pharmaceutics, 2004, 278, 239-254.	5.2	60
34	Development of Green/Red-Absorbing Chromophores Based on a Coumarin Scaffold That Are Useful as Caging Groups. Journal of Organic Chemistry, 2017, 82, 5398-5408.	3.2	58
35	One-Pot Synthesis of Substituted 2,2′-Bipyrroles. A Straightforward Route to Aryl Porphycenes. Organic Letters, 2009, 11, 77-79.	4.6	57
36	Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules, 2015, 20, 6284-6298.	3.8	55

#	Article	IF	CITATIONS
37	Solvent influence on the kinetics of the photodynamic degradation of trolox, a water-soluble model compound for vitamin E. Journal of Photochemistry and Photobiology B: Biology, 1995, 29, 157-162.	3.8	54
38	Timeâ€Resolved Near Infrared Studies on Singlet Oxygen Production by the Photosensitizing 2â€Arylpropionic Acids*. Photochemistry and Photobiology, 1997, 65, 828-832.	2.5	54
39	Photophysical Properties of Neutral and Cationic Tetrapyridinoporphyrazines. Photochemistry and Photobiology, 2000, 71, 53-59.	2.5	54
40	Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins. Photochemical and Photobiological Sciences, 2004, 3, 706-710.	2.9	54
41	Synthesis, Spectroscopic, and Photophysical Characterization and Photosensitizing Activity toward Prokaryotic and Eukaryotic Cells of Porphyrin-Magainin and -Buforin Conjugates. Journal of Medicinal Chemistry, 2014, 57, 1403-1415.	6.4	51
42	Quantification of Photosensitized Singlet Oxygen Production by a Fluorescent Protein. ChemPhysChem, 2011, 12, 161-165.	2.1	50
43	Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity?. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1063-1071.	2.6	49
44	Light-controlled real time information transmitting systems based on nanosecond thermally-isomerising amino-azopyridinium salts. Chemical Communications, 2012, 48, 3421.	4.1	48
45	Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azoleâ€resistant <i>Candida albicans</i> strains. Mycoses, 2014, 57, 35-42.	4.0	48
46	A comparison between the photophysical and photosensitising properties of tetraphenyl porphycenes and porphyrins. New Journal of Chemistry, 2005, 29, 378-384.	2.8	47
47	On the Phosphorescence of 1H-Phenalen-1-one. Helvetica Chimica Acta, 2001, 84, 2533.	1.6	45
48	Photo-driven optical oscillators in the kHz range based on push–pull hydroxyazopyridines. Chemical Communications, 2011, 47, 4022.	4.1	45
49	Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS ONE, 2016, 11, e0164507.	2.5	45
50	Phototoxic Phytoalexins. Processes that Compete with the Photosensitized Production of Singlet Oxygen by 9-Phenylphenalenonesâ€. Photochemistry and Photobiology, 2006, 82, 95.	2.5	42
51	Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP. Photochemical and Photobiological Sciences, 2015, 14, 280-287.	2.9	42
52	Photochemistry of the singlet oxygen [O2(1Δg)] sensitizer perinaphthenone (phenalenone) in N,N′-dimethylacetamide and 1,4-dioxane. New Journal of Chemistry, 1999, 23, 85-93.	2.8	41
53	C60 Fullerene-based materials as singlet oxygen O2(1î"g) photosensitizers: a time-resolved near-IR luminescence and optoacoustic study. Physical Chemistry Chemical Physics, 2001, 3, 1638-1643.	2.8	41
54	Fastest molecular photochromic switches based on nanosecond isomerizing benzothiazolium azophenolic salts. Journal of Materials Chemistry C, 2014, 2, 474-480.	5.5	40

#	Article	IF	CITATIONS
55	Tautomerism in Porphycenes: Analysis of Rate-Affecting Factors. Journal of Physical Chemistry B, 2015, 119, 2292-2301.	2.6	40
56	Photodynamic Synergistic Effect of Pheophorbide a and Doxorubicin in Combined Treatment against Tumoral Cells. Cancers, 2017, 9, 18.	3.7	39
57	Bactericidal Effect of Photodynamic Therapy, Alone or in Combination with Mupirocin or Linezolid, on Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 1002.	3.5	39
58	Photoantimicrobial Biohybrids by Supramolecular Immobilization of Cationic Phthalocyanines onto Cellulose Nanocrystals. Chemistry - A European Journal, 2017, 23, 4320-4326.	3.3	38
59	An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Scientific Reports, 2018, 8, 15021.	3.3	37
60	Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Scientific Reports, 2019, 9, 2428.	3.3	37
61	The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry. Journal of Dairy Science, 2015, 98, 89-94.	3.4	36
62	Subdiffraction localization of a nanostructured photosensitizer in bacterial cells. Scientific Reports, 2015, 5, 15564.	3.3	35
63	Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochemical and Photobiological Sciences, 2010, 9, 1336-1341.	2.9	34
64	Toward a 3D Cellular Model for Studying <i>In Vitro</i> the Outcome of Photodynamic Treatments: Accounting for the Effects of Tissue Complexity. Tissue Engineering - Part A, 2013, 19, 1665-1674.	3.1	34
65	Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Molecules, 2018, 23, 2749.	3.8	34
66	Synthesis, optical absorption and photophysical properties of cone-shaped subnaphthalocyanine â€. Perkin Transactions II RSC, 2000, , 1091-1094.	1.1	33
67	Phytochrome models. 11. Photophysics and photochemistry of phycocyanobilin dimethyl ester. Journal of the American Chemical Society, 1991, 113, 7322-7334.	13.7	32
68	A novel fluoro-chromogenic click reaction for the labelling of proteins and nanoparticles with near-IR theranostic agents. Chemical Communications, 2015, 51, 5586-5589.	4.1	32
69	Diethyl 2,7-Dibromo-4H,5H- thieno[3,2-b:4,5-bâ€~]dipyrrole-3,6- dicarboxylate:  A Key Intermediate for a Diversity Oriented Synthesis of 2,7,12,17-Tetraarylporphycenes. Organic Letters, 2006, 8, 847-850.	4.6	30
70	Fast Isomerizing Methyl Iodide Azopyridinium Salts for Molecular Switches. Organic Letters, 2010, 12, 3514-3517.	4.6	30
71	Temocene: the porphycene analogue of temoporfin (Foscan®). MedChemComm, 2011, 2, 616.	3.4	30
72	On the mechanism of Candida spp. photoinactivation by hypericin. Photochemical and Photobiological Sciences, 2012, 11, 1099-1107.	2.9	30

5

#	Article	IF	CITATIONS
73	A self-assembled nanostructured material with photosensitising properties. RSC Advances, 2013, 3, 17874.	3.6	30
74	Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chemical Communications, 2016, 52, 8405-8408.	4.1	30
75	Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo. Photoacoustics, 2018, 9, 49-61.	7.8	29
76	A Photoactivatable Far-Red/Near-Infrared BODIPY To Monitor Cellular Dynamics in Vivo. ACS Sensors, 2018, 3, 1347-1353.	7.8	29
77	Cellular and vascular effects of the photodynamic agent temocene are modulated by the delivery vehicle. Journal of Controlled Release, 2012, 162, 355-363.	9.9	28
78	Synthesis, photophysical studies and 102 generation of carboxylate-terminated zinc phthalocyanine dendrimers. Journal of Inorganic Biochemistry, 2014, 136, 170-176.	3.5	28
79	High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution. Journal of Organic Chemistry, 2018, 83, 11519-11531.	3.2	28
80	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie, 2019, 131, 6377-6381.	2.0	28
81	The photophysical properties of porphycene incorporated in small unilamellar lipid vesicles. Journal of Photochemistry and Photobiology B: Biology, 1989, 3, 193-207.	3.8	27
82	Effect of the Media on the Quantum Yield of Singlet Oxygen (O2(1Δg)) Production by 9H-Fluoren-9-one: Solvents and Solvent Mixtures. Helvetica Chimica Acta, 2003, 86, 384-397.	1.6	27
83	Naphthoxazoleâ€Based Singlet Oxygen Fluorescent Probes. Photochemistry and Photobiology, 2013, 89, 1427-1432.	2.5	27
84	Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. European Journal of Medicinal Chemistry, 2020, 187, 111957.	5.5	27
85	Singlet Oxygen Phosphorescence Enhancement by Silver Islands Films. Journal of Physical Chemistry C, 2011, 115, 16275-16281.	3.1	26
86	Dual fluorescence in 9-amino-2,7,12,17-tetraphenylporphycene. Physical Chemistry Chemical Physics, 2011, 13, 10326.	2.8	26
87	Naphthoxanthenyl, a New Stable Phenalenyl Type Radical Stabilized by Electronic Effects. Organic Letters, 2013, 15, 2970-2973.	4.6	26
88	A Comparative Study on Two Cationic Porphycenes: Photophysical and Antimicrobial Photoinactivation Evaluation. International Journal of Molecular Sciences, 2015, 16, 27072-27086.	4.1	26
89	Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media. Methods, 2016, 109, 64-72.	3.8	26
90	Effective Photodynamic Inactivation of 26 Escherichia coli Strains with Different Antibiotic Susceptibility Profiles: A Planktonic and Biofilm Study. Antibiotics, 2020, 9, 98.	3.7	26

#	Article	IF	CITATIONS
91	Arresting Tautomerization in a Single Molecule by the Surrounding Polymer: 2,7,12,17-Tetraphenyl Porphycene. Journal of Physical Chemistry Letters, 2013, 4, 3967-3971.	4.6	25
92	QUANTUM YIELD OF PRODUCTION OF SINGLET MOLECULAR OXYGEN (xδg) IN AQUEOUS DISPERSIONS OF SMALL UNILAMELLAR LIPID VESICLES. A TIME-RESOLVED NEAR-IR PHOSPHORESCENCE STUDY*,â€. Photochemistry and Photobiology, 1990, 51, 551-556.	2.5	24
93	Inclusion complex of calix[8] arene-C60: photophysical properties and its behaviour as singlet molecular oxygen sensitiser in the solid state. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115, 69-71.	3.9	24
94	Poly(<i>D</i> , <i>L</i> -lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating. Nanotechnology, 2015, 26, 365104.	2.6	24
95	Cationic phthalocyanine dendrimers as potential antimicrobial photosensitisers. Organic and Biomolecular Chemistry, 2017, 15, 9008-9017.	2.8	24
96	Nanoscale View of Amyloid Photodynamic Damage. Journal of the American Chemical Society, 2020, 142, 922-930.	13.7	24
97	A porphycene-gentamicin conjugate for enhanced photodynamic inactivation of bacteria. Bioorganic Chemistry, 2020, 97, 103661.	4.1	24
98	Spectral and kinetic properties of the radical ions of chloroboron(III) subnaphthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 214-219.	3.9	23
99	Tautomerization in 2,7,12,17â€Tetraphenylporphycene and 9â€Aminoâ€2,7,12,17â€tetraphenylporphycene: Influence of Asymmetry on the Direction of the Transition Moment. Chemistry - A European Journal, 2012, 18, 13160-13167.	3.3	23
100	Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. European Journal of Medicinal Chemistry, 2013, 63, 401-414.	5.5	23
101	Boosting the singlet oxygen photosensitization abilities of Zn(<scp>ii</scp>) phthalocyanines through functionalization with bulky fluorinated substituents. Organic and Biomolecular Chemistry, 2019, 17, 7448-7454.	2.8	23
102	Sequential Uncaging with Green Light can be Achieved by Fineâ€Tuning the Structure of a Dicyanocoumarin Chromophore. ChemistryOpen, 2017, 6, 375-384.	1.9	23
103	A genetically-encoded photosensitiser demonstrates killing of bacteria by purely endogenous singlet oxygen. Photochemical and Photobiological Sciences, 2012, 11, 1411-1413.	2.9	22
104	Morphology effects on singlet oxygen production and bacterial photoinactivation efficiency by different silica-protoporphyrin IX nanocomposites. RSC Advances, 2017, 7, 14422-14429.	3.6	22
105	Hypericin–Apomyoglobin: An Enhanced Photosensitizer Complex for the Treatment of Tumor Cells. Biomacromolecules, 2019, 20, 2024-2033.	5.4	22
106	2,7,12,17-Tetra(p-butylphenyl)-3,6,13,16-tetraazaporphycene: The First Example of a Straightforward Synthetic Approach to a New Class of Photosensitizing Macrocycles. European Journal of Organic Chemistry, 2003, 2003, 1635-1640.	2.4	21
107	Chapter 2. Properties of Singlet Oxygen. Comprehensive Series in Photochemical and Photobiological Sciences, 2016, , 23-46.	0.3	21
108	On the mechanism of Candida tropicalis biofilm reduction by the combined action of naturally-occurring anthraquinones and blue light. PLoS ONE, 2017, 12, e0181517.	2.5	21

#	Article	IF	CITATIONS
109	Photosensitization of skin fibroblasts and HeLa cells by three chlorin derivatives: Role of chemical structure and delivery vehicle. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 583-596.	2.6	20
110	Asymmetric porphycenes: synthesis and photophysical properties of 9-substituted 2,7,12,17-tetraphenylporphycenes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 376-381.	0.8	20
111	NanoDCFHâ€DA: A Silicaâ€based Nanostructured Fluorogenic Probe for the Detection of Reactive Oxygen Species. Photochemistry and Photobiology, 2018, 94, 1143-1150.	2.5	20
112	A non-tetradecarboxylative synthesis of 2,7,12,17-tetraphenylporphycene. Journal of Porphyrins and Phthalocyanines, 2001, 05, 846-852.	0.8	19
113	Microenvironment-switchable singlet oxygen generation by axially-coordinated hydrophilic ruthenium phthalocyanine dendrimers. Physical Chemistry Chemical Physics, 2011, 13, 3385-3393.	2.8	19
114	Zinc-Substituted Myoglobin Is a Naturally Occurring Photo-antimicrobial Agent with Potential Applications in Food Decontamination. Journal of Agricultural and Food Chemistry, 2016, 64, 8633-8639.	5.2	19
115	Triphenylphosphonium cation: A valuable functional group for antimicrobial photodynamic therapy. Journal of Biophotonics, 2018, 11, e201800054.	2.3	19
116	Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. Nanomaterials, 2019, 9, 214.	4.1	19
117	Opto-acoustic study of tinuvin-P and rhodamine 6G in solid polymeric matrices. Applied Physics B: Lasers and Optics, 2001, 72, 355-360.	2.2	18
118	Photophysics and Photochemistry of Naphthoxazinone Derivatives. Journal of Organic Chemistry, 2008, 73, 5371-5378.	3.2	18
119	A photoswitchable bis-azo derivative with a high temporal resolution. Chemical Communications, 2014, 50, 11462-11464.	4.1	18
120	Intramolecular and intermolecular photoinduced electron transfer in isomeric mesoporphyrin nitrobenzyl esters: structure and solvent effects. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93, 119-128.	3.9	17
121	Regioselective symmetrical bromination of protected 2,2′â€biimidazole. Journal of Heterocyclic Chemistry, 2002, 39, 733-735.	2.6	17
122	Radical species derived from phenalenone: characterization and role of upper excited states. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 9-12.	3.9	17
123	Liposomal temocene (m-THPPo) photodynamic treatment induces cell death by mitochondria-independent apoptosis. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4611-4620.	2.4	17
124	Chapter 9. Newest approaches to singlet oxygen photosensitisation in biological media. Photochemistry, 2014, , 233-278.	0.2	17
125	Silica-based nanosystems for therapeuticÂapplications in the skin. Nanomedicine, 2019, 14, 2243-2267.	3.3	17
126	Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes. Applied Physics B: Lasers and Optics, 2002, 75, 687-694.	2.2	16

#	Article	IF	CITATIONS
127	Tuning the local solvent composition at a drug carrier surface: the effect of dimethyl sulfoxide/water mixture on the photofunctional properties of hypericin–β-lactoglobulin complexes. Journal of Materials Chemistry B, 2017, 5, 1633-1641.	5.8	16
128	An Artificial Neural Network Model for Predicting the Subcellular Localization of Photosensitisers for Photodynamic Therapy of Solid Tumours. Current Medicinal Chemistry, 2012, 19, 2472-2482.	2.4	15
129	Modifications of Microvascular EC Surface Modulate Phototoxicity of a Porphycene anti-ICAM-1 Immunoconjugate; Therapeutic Implications. Langmuir, 2013, 29, 9734-9743.	3.5	15
130	Tetramethylbenzidine: An Acoustogenic Photoacoustic Probe for Reactive Oxygen Species Detection. Sensors, 2020, 20, 5952.	3.8	15
131	Photosensitizing proteins for antibacterial photodynamic inactivation. Translational Biophotonics, 2020, 2, e201900031.	2.7	15
132	Photochemical production and characterisation of the radical ions of tetraphenylporphycenes. Photochemical and Photobiological Sciences, 2006, 5, 376.	2.9	14
133	Tautomerism and dual fluorescence in 9-substituted n-propyl- and methoxyethyl-porphycenes. Journal of Porphyrins and Phthalocyanines, 2012, 16, 633-640.	0.8	14
134	Crosswise Phthalocyanines with Collinear Functionalization: New Paradigmatic Derivatives for Efficient Singlet Oxygen Photosensitization. ChemPlusChem, 2019, 84, 673-679.	2.8	14
135	Photochemistry of Phytoalexins Containing Phenalenone-like Chromophores: Photophysics and Singlet Oxygen Photosensitizing Properties of the Plant Oxoaporphine Alkaloid Oxoglaucine¶. Photochemistry and Photobiology, 2005, 81, 120.	2.5	13
136	Transformation of COUPY Fluorophores into a Novel Class of Visibleâ€Lightâ€Cleavable Photolabile Protecting Groups. Chemistry - A European Journal, 2020, 26, 16222-16227.	3.3	13
137	Polymer bound pyrrole compounds, IX. Photophysical and singlet molecular oxygen photosensitizing properties of mesoporphyrin IX covalently bound to a low molecular weight polyethylene glycol. Journal of Photochemistry and Photobiology B: Biology, 1997, 41, 53-59.	3.8	12
138	β-Phenyl quenching of 9-phenylphenalenones: a novel photocyclisation reaction with biological implications. Physical Chemistry Chemical Physics, 2014, 16, 18813-18820.	2.8	12
139	Optical writing and reading with a photoactivatable carbazole. Physical Chemistry Chemical Physics, 2015, 17, 11140-11143.	2.8	12
140	Selfâ€Assembled Binaphthylâ€Bridged Amphiphilic AABB Phthalocyanines: Nanostructures for Efficient Antimicrobial Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 4955-4963.	3.3	12
141	Effect of Aza Substitution on the Photophysical and Electrochemical Properties of Porphycenes:Â Characterization of the Near-IR-Absorbing Photosensitizers 2,7,12,17-Tetrakis(p-substituted) Tj ETQq1 1 0.7843	142gBT /(Overlock 10 T
142	Carminic Acid Linked to Silica Nanoparticles as Pigment/Antioxidant Bifunctional Excipient for Pharmaceutical Emulsions. Pharmaceutics, 2020, 12, 376.	4.5	11
143	Structural implications on the excitation dynamics of fluorescent 3H-indolium cations. Physical Chemistry Chemical Physics, 2017, 19, 11904-11913.	2.8	10
144	Assessing Amphiphilic ABAB Zn(II) Phthalocyanines with Enhanced Photosensitization Abilities in In Vitro Photodynamic Therapy Studies Against Cancer. Molecules, 2020, 25, 213.	3.8	10

#	Article	IF	CITATIONS
145	Riboflavin-binding proteins for singlet oxygen production. Photochemical and Photobiological Sciences, 2022, 21, 1545-1555.	2.9	10
146	Theoretical Characterization of Absorption and Emission Spectra of an Asymmetric Porphycene. Journal of Physical Chemistry A, 2012, 116, 3366-3376.	2.5	9
147	Singlet molecular oxygen quenching by the antioxidant dimethylmethoxy chromanol in solution and in <i>ex vivo</i> porcine skin. International Journal of Cosmetic Science, 2013, 35, 272-280.	2.6	9
148	Adaptable Photochromic Switches with Self-Aggregating Heterocyclic Azo Dyes. Journal of Physical Chemistry C, 2019, 123, 23140-23144.	3.1	9
149	Smart Dual-Functionalized Gold Nanoclusters for Spatio-Temporally Controlled Delivery of Combined Chemo- and Photodynamic Therapy. Nanomaterials, 2020, 10, 2474.	4.1	9
150	Photodynamic action of Hypericum perforatum hydrophilic extract against Staphylococcus aureus. Photochemical and Photobiological Sciences, 2020, 19, 324-331.	2.9	9
151	Oxygen effects on tetrapropylporphycene near-infrared luminescence kinetics. Journal of Molecular Structure, 2013, 1044, 303-307.	3.6	8
152	An Ultra‣ong‣ived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes. Angewandte Chemie - International Edition, 2021, 60, 16109-16118.	13.8	8
153	Photosensitive EGFR-Targeted Nanocarriers for Combined Photodynamic and Local Chemotherapy. Pharmaceutics, 2022, 14, 405.	4.5	8
154	On the determination of quantum yields for singlet molecular oxygen photosensitization. Journal of Photochemistry and Photobiology B: Biology, 1994, 22, 171-172.	3.8	7
155	Unusual Properties of Asymmetric Porphycenes. , 2016, , 299-349.		7
156	NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angewandte Chemie, 2017, 129, 2931-2934.	2.0	7
157	Chemical Control Over Optical Trapping Force at an Interface. Advanced Optical Materials, 2022, 10, .	7.3	7
158	Ground- and excited-state interactions of 2,7,12,17-tetraphenylporphycene with model target biomolecules for type-I photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2009, 13, 99-106.	0.8	6
159	Dose-dependent progressive sunscreens. A new strategy for photoprotection?. Photochemical and Photobiological Sciences, 2010, 9, 530.	2.9	6
160	Synthesis, photophysical studies and 1O2 generation of ruthenium phthalocyanine dendrimers. Journal of Porphyrins and Phthalocyanines, 2016, 20, 378-387.	0.8	6
161	Acid- and hydrogen-bonding-induced switching between 22-ï€ and 18-ï€ electron conjugations in 2-aminothiazolo[4,5-c]porphycenes. Physical Chemistry Chemical Physics, 2017, 19, 25537-25543.	2.8	6
162	Fluorescent Flavoprotein Heterodimers: Combining Photostability with Singlet Oxygen Generation. ChemPhotoChem, 2018, 2, 571-574.	3.0	6

#	Article	IF	CITATIONS
163	Structure-activity study of furyl aryloxazole fluorescent probes for the detection of singlet oxygen. PLoS ONE, 2018, 13, e0200006.	2.5	6
164	9-Aryl-phenalenones: Bioinspired thermally reversible photochromic compounds for photoswitching applications in the pico-to milliseconds range. Dyes and Pigments, 2021, 186, 109060.	3.7	6
165	Photophysical properties of neutral and cationic tetrapyridinoporphyrazines. Photochemistry and Photobiology, 2000, 71, 53-9.	2.5	6
166	A Double Payload Complex between Hypericin and All-trans Retinoic Acid in the β-Lactoglobulin Protein. Antibiotics, 2022, 11, 282.	3.7	5
167	Necrotic cell death induced by photodynamic treatment of human lung adenocarcinoma A-549 cells with palladium(II)-tetraphenylporphycene. International Journal of Oncology, 2004, 24, 1221-8.	3.3	4
168	Solvent and Media Effects on the Photophysics of Naphthoxazole Derivatives. Photochemistry and Photobiology, 2013, 89, 1327-1334.	2.5	4
169	Monitoring of singlet oxygen luminescence and mitochondrial autofluorescence after illumination of hypericin/mitochondria complex: a time-resolved study. Laser Physics Letters, 2013, 10, 075609.	1.4	4
170	Terapia fotodinámica antimicrobiana in vitro aplicada sobre Trichophyton mentagrophytes con nuevo azul de metileno como fotosensibilizador. Actas Dermo-sifiliográficas, 2016, 107, 765-770.	0.4	4
171	Poly-(<i>D,L</i> -lactide- <i>co</i> -glycolide) nanoparticles with covalently-bound porphyrins for efficient singlet oxygen photosensitization. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1306-1318.	0.8	4
172	Singlet oxygen production and <i>in vitro</i> phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites. Journal of Physical Organic Chemistry, 2017, 30, e3722.	1.9	4
173	Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors. Methods in Molecular Biology, 2021, 2202, 165-188.	0.9	4
174	Uptake of tetraphenylporphycene and its photoeffects on actin and cytokeratin elements of HeLa cells. Anti-cancer Drug Design, 1997, 12, 543-54.	0.3	4
175	Photosensitizing properties of palladium-tetraphenylporphycene on cultured tumour cells. Anti-cancer Drug Design, 2000, 15, 143-50.	0.3	4
176	Thiazolyl-substituted porphyrins as standards for singlet molecular oxygen photosensitization. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1202-1208.	0.8	3
177	Silica-based nanostructured materials for biomedical applications. , 2015, , 429-448.		3
178	Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochemical and Photobiological Sciences, 2021, 20, 843-857.	2.9	3
179	Versatile Supramolecular Complex for Targeted Antimicrobial Photodynamic Inactivation. Bioconjugate Chemistry, 2022, 33, 666-676.	3.6	3
180	Photochemistry of Phytoalexins Containing Phenalenoneâ€like Chromophores: Photophysics and Singlet Oxygen Photosensitizing Properties of the Plant Oxoaporphine Alkaloid Oxoglaucine [¶] . Photochemistry and Photobiology, 2005, 81, 120-124.	2.5	2

#	Article	IF	CITATIONS
181	Preclinical photodynamic therapy in Spain 1: Chemical and photophysical studies on porphycenes and other photosensitizers. Journal of Porphyrins and Phthalocyanines, 2009, 13, 528-536.	0.8	2
182	Microscopy beyond imaging: space-resolved photochemistry and photobiology. Photochemical and Photobiological Sciences, 2009, 8, 441-441.	2.9	2
183	Topical and systemic photoprotection. Photochemical and Photobiological Sciences, 2010, 9, 419.	2.9	2
184	Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria. Proceedings of SPIE, 2013, , .	0.8	2
185	In Vitro Antimicrobial Photodynamic Therapy Against Trichophyton mentagrophytes Using New Methylene Blue as the Photosensitizer. Actas Dermo-sifiliogrÃ _i ficas, 2016, 107, 765-770.	0.4	2
186	An Ultra‣ong‣ived Triplet Excited State in Water at Room Temperature: Insights on the Molecular Design of Tridecafullerenes. Angewandte Chemie, 2021, 133, 16245-16254.	2.0	2
187	Benzoylation at the meso Position of a Zinc(II) Deuteroporphyrin. Monatshefte Für Chemie, 1998, 129, 69-79.	1.8	1
188	The digital photobiology compendium: perspectives on a web-based teaching tool from learners and developers. Photochemical and Photobiological Sciences, 2004, 3, 788.	2.9	1
189	Photofunctional proteins: from understanding to engineering. Photochemical and Photobiological Sciences, 2010, 9, 1285.	2.9	1
190	Intense White Molecular Fluorescence from Naphthoxazoleâ€Quinoline Derivatives. Photochemistry and Photobiology, 2018, 94, 1092-1099.	2.5	1
191	Photodamaging effects of tetraphenylporphycene in a human carcinoma cell line. Anti-cancer Drug Design, 1996, 11, 89-99.	0.3	1
192	Introduction to the themed issue dedicated to Kurt Schaffner. Photochemical and Photobiological Sciences, 2012, 11, 871.	2.9	0
193	c(RGDfK)―and ZnTriMPyPâ€Bound Polymeric Nanocarriers for Tumorâ€Targeted Photodynamic Therapy. Photochemistry and Photobiology, 2020, 96, 570-580.	2.5	0