Alicja Ratuszna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654413/publications.pdf

Version: 2024-02-01

623734 580821 31 633 14 25 citations g-index h-index papers 31 31 31 1228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of glassy carbon under heat treatment: correlation structure–mechanical properties. Journal of Materials Science, 2018, 53, 3509-3523.	3.7	111
2	Temperature Evolution of the Crystal Structure of AgNbO3. Phase Transitions, 2003, 76, 611-620.	1.3	75
3	Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE, 2014, 9, e110291.	2.5	61
4	Lessons from Chlorophylls: Modifications of Porphyrinoids Towards Optimized Solar Energy Conversion. Molecules, 2014, 19, 15938-15954.	3.8	37
5	Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 249-254.	3.9	36
6	Toward a Better Understanding of the Physical Stability of Amorphous Anti-Inflammatory Agents: The Roles of Molecular Mobility and Molecular Interaction Patterns. Molecular Pharmaceutics, 2015, 12, 3628-3638.	4.6	36
7	Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones. ACS Medicinal Chemistry Letters, 2014, 5, 336-339.	2.8	30
8	Crystal structure of cyanometallates <i>>Me</i> ₃ [<i>Co</i> <(i>CN) ₆] ₂ and <i>KMe</i> [<i>Fe</i> (<i>CN</i>) ₆] with <i>Me</i> = <i>Mn</i> ²⁺ , <i>Ni</i> ²⁺ , <i>Cu</i> , <i>CN</i>	0.2	25
9	Comparative Structural and Electrical Studies of V2O3 and V2—xNixO3 (0 < x < 0.75) Solid SolutionDedicated to Professor Joachim StrÃhle on the Occasion of his 65th Birthday. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2002, 628, 1236.	1.2	20
10	Synthesis of New Styrylquinoline Cellular Dyes, Fluorescent Properties, Cellular Localization and Cytotoxic Behavior. PLoS ONE, 2015, 10, e0131210.	2.5	20
11	Crystal structure of KCaF3 determined by the Rietveld profile method. Powder Diffraction, 1997, 12, 70-75.	0.2	19
12	DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 315-327.	3.9	16
13	Crystal structure of the three-dimensional magnetic network of type Mek[Fe(CN)6]l·mH2O, where Me=Cu, Ni, Co. Powder Diffraction, 1995, 10, 300-305.	0.2	15
14	Evidence of slow Debye-like relaxation in the anti-inflammatory agent etoricoxib. Physical Review E, 2015, 92, 022309.	2.1	15
15	Iron Chelators and Exogenic Photosensitizers. Synergy through Oxidative Stress Gene Expression. Journal of Cancer, 2017, 8, 1979-1987.	2.5	15
16	Optical and X-ray evidence of structural phase transitions in mixed (Rb1â^'xKx)CaF3crystals. Phase Transitions, 1995, 54, 43-59.	1.3	13
17	Cobalt protoporphyrin IX increases endogenous G―CSF and mobilizes HSC and granulocytes to the blood. EMBO Molecular Medicine, 2019, 11, e09571.	6.9	13
18	Platinum(II) coordination compounds with $4\hat{a}\in^2$ -pyridyl functionalized $2,2\hat{a}\in^2$: $6\hat{a}\in^2$, $2\hat{a}\in^3$ -terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. Journal of Inorganic Biochemistry, 2019, 201, 110809.	3.5	12

#	Article	IF	CITATIONS
19	Theoretical investigation of porphyrin-based photosensitizers with enhanced NIR absorption. Physical Chemistry Chemical Physics, 2013, 15, 19651.	2.8	11
20	Raman study of KMnF ₃ perovskite crystals doped by Na ⁺ . Phase Transitions, 2000, 72, 165-181.	1.3	10
21	Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10
22	Structural phase transitions in KMnF3doped by Li+, Na+and Rb+. Phase Transitions, 1997, 62, 181-198.	1.3	9
23	X-Ray powder diffraction study of structural phase transitions in (Ba0.5Sr0.5)PbO3perovskite. Phase Transitions, 2004, 77, 335-344.	1.3	6
24	New insight into the shortening of the collagen fibril D-period in human cornea. Journal of Biomolecular Structure and Dynamics, 2017, 35, 551-563.	3.5	6
25	Comparative Structural and Electrical Studies of V2O3 and V2—xNixO3 (0 < x < 0.75) Solid Solution. , 2002, 628, 1236.		3
26	Crystal structure of Cr2[Ni(CN)4]3·10H2O. Powder Diffraction, 1996, 11, 318-320.	0.2	2
27	Influence of the cationic substitution on the mechanism of structural phase transitions in RbCaF3 and KCaF3: Study of a typical mixed crystal Rb0.68K0.32CaF3. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 319-330.	0.6	2
28	Temperature evolution of the crystal structure in SrTiO $<$ sub $>3<$ sub $>doped$ by W $<$ sup $>6+<$ sup $>$, Ni $<$ sup $>3+<$ sup $>$, Fe $<$ sup $>3+<$ sup $>$ and La $<$ sup $>3+<$ sup $>$. Phase Transitions, 2011, 84, 1015-1027.	1.3	2
29	Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin. Journal of Chemical Physics, 2015, 142, 034302.	3.0	2
30	CRYSTAL STRUCTURE OF CuCr ₂ Se ₄ , Cu _{0.8} Co _{0.2} Cr ₂ Se AND Cu _{0.4} Co _{0.6} Cr ₂ Se Cr SeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeS		1
31	, 2001, , . Spatial arrangement of collagen fibrils in normal and keratoconus human cornea studied by low-frequency dielectric spectroscopy. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	0