David K C Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654221/publications.pdf Version: 2024-02-01

		11651	24258
428	18,167	70	110
papers	citations	h-index	g-index
437	437	437	6524
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Shooting for the moon: Genome editing for pig heart xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 2023, 166, 973-980.	0.8	5
2	Bridging to Allotransplantation—Is Pig Liver Xenotransplantation the Best Option?. Transplantation, 2022, 106, 26-36.	1.0	8
3	The Genetically Engineered Heart as a Bridge to Allotransplantation in Infants Just Around the Corner?. Annals of Thoracic Surgery, 2022, 114, 536-544.	1.3	30
4	Scientific and psychosocial ethical considerations for initial clinical trials of kidney xenotransplantation. Xenotransplantation, 2022, 29, .	2.8	11
5	Profound thrombocytopenia associated with administration of multiple antiâ€inflammatory agents in baboons. Immunity, Inflammation and Disease, 2022, 10, .	2.7	2
6	Recent progress in the pigâ€ŧoâ€nonhuman primate kidney transplantation model: Report of a symposium. Xenotransplantation, 2022, 29, e12728.	2.8	4
7	T and B lymphocyte dynamics after genetically-modified pig-to-baboon kidney xenotransplantation with an anti-CD40mAb-based immunosuppressive regimen. Transplant Immunology, 2022, 71, 101545.	1.2	3
8	Invited commentary: Initial reflections on the world's first clinical geneticallyâ€engineered pig heart transplant. Xenotransplantation, 2022, 29, e12737.	2.8	7
9	The future of cardiac xenotransplantation. Nature Reviews Cardiology, 2022, 19, 281-282.	13.7	10
10	Serum Antibody Binding and Cytotoxicity to Pig Cells in Chinese Subjects: Relevance to Clinical Renal Xenotransplantation. Frontiers in Immunology, 2022, 13, 844632.	4.8	4
11	The potential of genetically engineered pig heart transplantation in infants with complex congenital heart disease. Pediatric Transplantation, 2022, 26, e14260.	1.0	8
12	Physiological aspects of pig kidney xenotransplantation and implications for management following transplant. Xenotransplantation, 2022, 29, e12743.	2.8	21
13	Current Topics of Relevance to the Xenotransplantation of Free Pig Islets. Frontiers in Immunology, 2022, 13, 854883.	4.8	4
14	The 2021 IXA Keith Reemtsma Lecture: Moving xenotransplantation to the clinic. Xenotransplantation, 2022, 29, e12723.	2.8	12
15	Informed Consent for Potential Recipients of Pig Kidney Xenotransplantation in the United States. Transplantation, 2022, 106, 1754-1762.	1.0	17
16	Pig heart and lung xenotransplantation: Present status. Journal of Heart and Lung Transplantation, 2022, 41, 1014-1022.	0.6	18
17	Expert Opinion Special Feature: Patient Selection for Initial Clinical Trials of Pig Organ Transplantation. Transplantation, 2022, 106, 1720-1723.	1.0	5
18	Clinical trials of pediatric cardiac xenotransplantation. American Journal of Transplantation, 2021, 21, 433-434.	4.7	6

#	Article	IF	CITATIONS
19	The problem of the "4th xenoantigen―after pig organ transplantation in nonâ€human primates may be overcome by expression of human "protective―proteins. Xenotransplantation, 2021, 28, e12658.	2.8	12
20	Growth hormone receptor knockout: Relevance to xenotransplantation. Xenotransplantation, 2021, 28, e12652.	2.8	25
21	Attitudes toward xenotransplantation: A survey of parents and pediatric cardiac providers. Pediatric Transplantation, 2021, 25, e13851.	1.0	30
22	Racial differences in attitudes to clinical pig organ Xenotransplantation. Xenotransplantation, 2021, 28, e12656.	2.8	19
23	The first clinical trialâ \in "Kidney or heart?. Xenotransplantation, 2021, 28, e12644.	2.8	9
24	Pig kidney xenotransplantation: Progress toward clinical trials. Clinical Transplantation, 2021, 35, e14139.	1.6	37
25	The Role of SLAs in Xenotransplantation. Transplantation, 2021, 105, 300-307.	1.0	24
26	What Therapeutic Regimen Will Be Optimal for Initial Clinical Trials of Pig Organ Transplantation?. Transplantation, 2021, 105, 1143-1155.	1.0	28
27	Anti-pig IgE and IgA Antibodies in Naive Primates and Nonhuman Primates With Pig Xenografts. Transplantation, 2021, 105, 318-327.	1.0	7
28	Deceased humans and living pigs as sources of kidneys for clinical transplantation—Can they be compared?. Xenotransplantation, 2021, 28, e12670.	2.8	2
29	Potential roles of mesenchymal stromal cells in islet allo―and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation, 2021, 28, e12678.	2.8	9
30	A perspective on the potential detrimental role of inflammation in pig orthotopic heart xenotransplantation. Xenotransplantation, 2021, 28, e12687.	2.8	11
31	Comparison of porcine corneal decellularization methods and importance of preserving corneal limbus through decellularization. PLoS ONE, 2021, 16, e0243682.	2.5	10
32	Factors influencing attitudes toward xenotransplantation clinical trials: A report of focus group studies. Xenotransplantation, 2021, 28, e12684.	2.8	26
33	Human Hemangioblast-Derived Mesenchymal Stem Cells Promote Islet Engraftment in a Minimal Islet Mass Transplantation Model in Mice. Frontiers in Medicine, 2021, 8, 660877.	2.6	2
34	Immunological selection and monitoring of patients undergoing pig kidney transplantation. Xenotransplantation, 2021, 28, e12686.	2.8	11
35	Natural antiâ€pig antibodies in infant baboons. Xenotransplantation, 2021, 28, e12692.	2.8	2
36	Evidence suggesting that deletion of expression of Nâ€glycolylneuraminic acid (Neu5Gc) in the organâ€source pig is associated with increased antibodyâ€mediated rejection of kidney transplants in baboons. Xenotransplantation, 2021, 28, e12700.	2.8	23

#	Article	IF	CITATIONS
37	Evidence that sensitization to tripleâ€knockout pig cells will not be detrimental to subsequent allotransplantation. Xenotransplantation, 2021, 28, e12701.	2.8	14
38	Ignoring a basic pathophysiological mechanism of heart failure progression will not make it go away. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1919-H1922.	3.2	5
39	Stable expression of the human thrombomodulin transgene in pig endothelial cells is associated with a reduction in the inflammatory response. Cytokine, 2021, 148, 155580.	3.2	3
40	Genetic engineering of porcine endothelial cell lines for evaluation of human-to-pig xenoreactive immune responses. Scientific Reports, 2021, 11, 13131.	3.3	8
41	Aspects of histocompatibility testing in xenotransplantation. Transplant Immunology, 2021, 67, 101409.	1.2	7
42	Suggested Patient Selection Criteria for Initial Clinical Trials of Pig Kidney Xenotransplantation in the United States. Transplantation, 2021, 105, 1904-1908.	1.0	25
43	"You cannot stay in the laboratory foreverâ€*: Taking pig kidney xenotransplantation from the laboratory to the clinic. EBioMedicine, 2021, 71, 103562.	6.1	17
44	Initial experimental experience of tripleâ€knockout pig red blood cells as potential sources for transfusion in alloimmunized patients with sickle cell disease. Transfusion, 2021, 61, 3104-3118.	1.6	10
45	Addressing concerns toward xenotransplantation. Journal of Cardiac Surgery, 2021, 36, 4821.	0.7	0
46	Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons. Xenotransplantation, 2021, 28, .	2.8	14
47	Initial evidence that blockade of the CD40/CD154 costimulation pathway alone is sufficient as maintenance therapy in xenotransplantation. Xenotransplantation, 2021, 28, .	2.8	12
48	Genetically engineered pig kidney transplantation in a brainâ€dead human subject. Xenotransplantation, 2021, 28, e12718.	2.8	26
49	The Role of Interleukin-6 (IL-6)Âin the Systemic Inflammatory Response in Xenograft Recipients and in Pig Kidney Xenograft Failure. Frontiers in Immunology, 2021, 12, 788949.	4.8	8
50	Anti-Pig Antibody in Infants: Can a Genetically Engineered Pig Heart Bridge to Allotransplantation?. Annals of Thoracic Surgery, 2020, 109, 1268-1273.	1.3	23
51	Is interleukin-6 receptor blockade (tocilizumab) beneficial or detrimental to pig-to-baboon organ xenotransplantation?. American Journal of Transplantation, 2020, 20, 999-1013.	4.7	23
52	Xenotransplantation of the endocrine pancreas. , 2020, , 423-446.		2
53	Efficacy of ATG and Rituximab in capuchin monkeys (a New World monkey)–An in vitro study relevant to xenotransplantation. Xenotransplantation, 2020, 27, e12627.	2.8	6
54	Heart surgery and transplantation: innovations impacting on concepts of life and death. Medical Humanities, 2020, 46, 372-383.	1.2	1

#	Article	IF	CITATIONS
55	Effect of intravenous immunoglobulin (IVIg) on primate complement-dependent cytotoxicity of genetically engineered pig cells: relevance to clinical xenotransplantation. Scientific Reports, 2020, 10, 11747.	3.3	11
56	How the COVIDâ€19 pandemic may impact public support for clinical xenotransplantation in the United States?. Xenotransplantation, 2020, 27, e12623.	2.8	12
57	Does expression of a human complement-regulatory protein on xenograft cells protect them from systemic complement activation?. International Journal of Surgery, 2020, 83, 184-188.	2.7	5
58	Extracellular histones and xenotransplantation. Xenotransplantation, 2020, 27, e12618.	2.8	5
59	Immunosuppressive and metabolic agents that influence allo―and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation, 2020, 27, e12640.	2.8	2
60	The immune system in infants: Relevance to xenotransplantation. Pediatric Transplantation, 2020, 24, e13795.	1.0	11
61	Clinical Pig Kidney Xenotransplantation: How Close Are We?. Journal of the American Society of Nephrology: JASN, 2020, 31, 12-21.	6.1	48
62	Clinical trials of xenotransplantation: The need for a worldwide registry. Xenotransplantation, 2020, 27, e12598.	2.8	3
63	The human Tâ€cell proliferative response to tripleâ€knockout pig cells in mixed lymphocyte reaction. Xenotransplantation, 2020, 27, e12619.	2.8	6
64	What will be the cost of a geneticallyâ€engineered pig organ for clinical xenotransplantation?. Xenotransplantation, 2020, 27, e12606.	2.8	4
65	Attitudes to Clinical Pig Kidney Xenotransplantation among Medical Providers and Patients. Kidney360, 2020, 1, 657-662.	2.1	21
66	Old World Monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (Triple-Knockout). Scientific Reports, 2020, 10, 9771.	3.3	68
67	Recommendations to the IRB review process in preparation of xenotransplantation clinical trials. Xenotransplantation, 2020, 27, e12587.	2.8	12
68	Inguinal Subcutaneous White Adipose Tissue (ISWAT) Transplantation Model of Murine Islets. Journal of Visualized Experiments, 2020, , .	0.3	1
69	Attitudes to Cardiac Xenotransplantation by Pediatric Heart Surgeons and Physicians. World Journal for Pediatric & Congenital Heart Surgery, 2020, 11, 426-430.	0.8	17
70	The final obstacle to successful preâ€clinical xenotransplantation?. Xenotransplantation, 2020, 27, e12596.	2.8	34
71	Paediatric xenotransplantation clinical trials and the right to withdraw. Journal of Medical Ethics, 2020, 46, 311-315.	1.8	19
72	Introduction: The Present Status of Xenotransplantation Research. Methods in Molecular Biology, 2020, 2110, 1-25.	0.9	13

#	Article	IF	CITATIONS
73	Thyroid Hormone Treatment in Heart Surgery and Heart Transplantation. , 2020, , 409-436.		1
74	Clinical trials of pig heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 1509-1511.	0.6	4
75	Evidence for GTKO/β4GalNT2KO Pigs as the Preferred Organ-source for Old World Nonhuman Primates as a Preclinical Model of Xenotransplantation. Transplantation Direct, 2020, 6, e590.	1.6	22
76	Metaâ€enalysis of public perception toward xenotransplantation. Xenotransplantation, 2020, 27, e12583.	2.8	33
77	Cardiac Xenotransplantation in Nonhuman Primates. , 2020, , 107-117.		Ο
78	Public Perceptions Toward the Clinical Trials of Organ Xenotransplantation. , 2020, , 277-285.		1
79	Cardiac xenotransplantation. , 2020, , 171-192.		0
80	Pig-to-Macaque Islet Xenotransplantation. Methods in Molecular Biology, 2020, 2110, 289-314.	0.9	2
81	Kidney Xenotransplantation in Nonhuman Primates. , 2020, , 91-106.		0
82	The Pathobiology of Pig-to-Primate Xeno.: A Historical Review. , 2020, , 27-63.		0
83	Is Sensitization to Pig Antigens Detrimental to Subsequent Allotransplantation?. , 2020, , 65-78.		0
84	Selection of Patients for the Initial Clinical Trials of Kidney Xenotransplantation. , 2020, , 209-220.		0
85	Is the renal subcapsular space the preferred site for clinical porcine islet xenotransplantation? Review article. International Journal of Surgery, 2019, 69, 100-107.	2.7	12
86	TNF-α promotes human antibody-mediated complement-dependent cytotoxicity of porcine endothelial cells through downregulating P38-mediated Occludin expression. Cell Communication and Signaling, 2019, 17, 75.	6.5	9
87	Incidence of Neoplasia in Pigs and Its Relevance to Clinical Organ Xenotransplantation. Comparative Medicine, 2019, 69, 86-94.	1.0	8
88	In Search of the Ideal Valve: Optimizing Genetic Modifications to Prevent Bioprosthetic Degeneration. Annals of Thoracic Surgery, 2019, 108, 624-635.	1.3	18
89	Human CTLA4-Ig therapy can give false-positive anti-pig antibody results in primates after xenotransplantation. Transplant Immunology, 2019, 57, 101243.	1.2	4
90	Selective inhibition of cyclooxygenaseâ€2 protects porcine aortic endothelial cells from human antibodyâ€mediated complementâ€dependent cytotoxicity. Xenotransplantation, 2019, 26, e12536.	2.8	3

#	Article	IF	CITATIONS
91	Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation, 2019, 26, e12564.	2.8	41
92	Indicators of impending pig kidney and heart xenograft failure: Relevance to clinical organ xenotransplantation - Review article. International Journal of Surgery, 2019, 70, 84-91.	2.7	8
93	Downregulation of Gabarapl1 significantly attenuates antibody binding to porcine aortic endothelial cells. Xenotransplantation, 2019, 26, e12537.	2.8	2
94	Financial support for xenotransplantation research. Xenotransplantation, 2019, 26, e12483.	2.8	4
95	Evidence for the important role of inflammation in xenotransplantation. Journal of Inflammation, 2019, 16, 10.	3.4	32
96	A potential role of TLR2 in xenograft rejection of porcine iliac endothelial cells: An in vitro study. Xenotransplantation, 2019, 26, e12526.	2.8	8
97	Circulating pigâ€specific DNA as a novel biomarker for monitoring xenograft rejection. Xenotransplantation, 2019, 26, e12522.	2.8	6
98	The complex functioning of the complement system in xenotransplantation. Xenotransplantation, 2019, 26, e12517.	2.8	32
99	Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation, 2019, 26, e12516.	2.8	115
100	The "Baby Fae―baboon heart transplant—Potential cause of rejection. Xenotransplantation, 2019, 26, e12511.	2.8	4
101	A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation, 2019, 26, e12497.	2.8	27
102	Carbohydrate antigen expression and antiâ€pig antibodies in New World capuchin monkeys: Relevance to studies of xenotransplantation. Xenotransplantation, 2019, 26, e12498.	2.8	38
103	Potential pathological role of proâ€inflammatory cytokines (ILâ€6, TNFâ€Î±, and ILâ€17) in xenotransplantation. Xenotransplantation, 2019, 26, e12502.	2.8	33
104	Cover Image, Volume 26, Issue 3. Xenotransplantation, 2019, 26, e12539.	2.8	0
105	Life-supporting Kidney Xenotransplantation From Genetically Engineered Pigs in Baboons: A Comparison of Two Immunosuppressive Regimens. Transplantation, 2019, 103, 2090-2104.	1.0	74
106	The potential role of 3D-bioprinting in xenotransplantation. Current Opinion in Organ Transplantation, 2019, 24, 547-554.	1.6	8
107	Circulating mi <scp>RNA</scp> or circulating <scp>DNA</scp> —Potential biomarkers for organ transplant rejection. Xenotransplantation, 2019, 26, e12444.	2.8	1
108	Will donorâ€derived neoplasia be problematic after clinical pig organ or cell xenotransplantation?. Xenotransplantation, 2019, 26, e12469.	2.8	3

#	Article	IF	CITATIONS
109	Experimental Pig Heart Xenotransplantation—Recent Progress and Remaining Problems. Annals of Thoracic Surgery, 2019, 107, 989-992.	1.3	6
110	Chronic dialysis in patients with endâ€stage renal disease: Relevance to kidney xenotransplantation. Xenotransplantation, 2019, 26, e12471.	2.8	22
111	Lifeâ€supporting porcine cardiac xenotransplantation: The Munich study. Xenotransplantation, 2019, 26, e12486.	2.8	2
112	Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: A new syndrome of clinical importance?. Xenotransplantation, 2019, 26, e12472.	2.8	31
113	The Case for Cardiac Xenotransplantation in Neonates: Is Now the Time to Reconsider Xenotransplantation for Hypoplastic Left Heart Syndrome?. Pediatric Cardiology, 2019, 40, 437-444.	1.3	38
114	Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome?. Blood Reviews, 2019, 35, 7-17.	5.7	12
115	Bringing Home The Bacon: Update on The State of Kidney Xenotransplantation. Blood Purification, 2018, 45, 254-259.	1.8	12
116	Jewish, Christian and Muslim theological perspectives about xenotransplantation. Xenotransplantation, 2018, 25, e12400.	2.8	56
117	ls sensitization to pig antigens detrimental to subsequent allotransplantation?. Xenotransplantation, 2018, 25, e12393.	2.8	38
118	Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 2018, 72, 196-205.	8.3	72
119	The Sda and Cad glycan antigens and their glycosyltransferase, β1,4Gal <scp>NA</scp> cTâ€ <scp>II</scp> , in xenotransplantation. Xenotransplantation, 2018, 25, e12386.	2.8	28
120	Immune Responses of HLA Highly Sensitized and Nonsensitized Patients to Genetically Engineered Pig Cells. Transplantation, 2018, 102, e195-e204.	1.0	24
121	Skin xenotransplantation: Historical review and clinical potential. Burns, 2018, 44, 1738-1749.	1.9	73
122	Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates. Transplantation, 2018, 102, 1050-1058.	1.0	37
123	Christiaan Barnard—The surgeon who dared: The story of the first human-to-human heart transplant. Global Cardiology Science & Practice, 2018, 2018, 11.	0.4	8
124	Cover Image, Volume 25, Issue 2. Xenotransplantation, 2018, 25, e12397.	2.8	0
125	Perspectives on the Optimal Genetically Engineered Pig in 2018 for Initial Clinical Trials of Kidney or Heart Xenotransplantation. Transplantation, 2018, 102, 1974-1982.	1.0	36
126	Data on B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy. Data in Brief, 2018, 20, 1965-1974.	1.0	3

#	Article	IF	CITATIONS
127	Christiaan Barnard's views on euthanasia. Baylor University Medical Center Proceedings, 2018, 31, 229-230.	0.5	Ο
128	Physiologic Aspects of Pig Kidney Transplantation in Nonhuman Primates. Comparative Medicine, 2018, 68, 332-340.	1.0	43
129	Serum amyloid a as an indicator of impending xenograft failure: Experimental studies. International Journal of Surgery, 2018, 60, 283-290.	2.7	13
130	Xenotransplantation research and the â€~International Journal of Surgery'. International Journal of Surgery, 2018, 58, 57-59.	2.7	0
131	Serum amyloid A as a marker of inflammation in xenotransplantation. European Journal of Inflammation, 2018, 16, 205873921878004.	0.5	5
132	Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BioMed Research International, 2018, 2018, 1-9.	1.9	11
133	Porcine <scp>IL</scp> â€6, <scp>IL</scp> â€1β, and <scp>TNF</scp> â€î± regulate the expression of proâ€inflammatoryâ€related genes and tissue factor in human umbilical vein endothelial cells. Xenotransplantation, 2018, 25, e12408.	2.8	26
134	Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 355-364.	2.3	4
135	B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy. Transplant Immunology, 2018, 51, 12-20.	1.2	10
136	An approach to induction of tolerance to pig cardiac xenografts in neonates. Xenotransplantation, 2018, 25, e12454.	2.8	12
137	Christiaan Barnard—The Great Communicator?. American Journal of Cardiology, 2018, 121, 1652-1655.	1.6	Ο
138	Future Directions in Liver Replacement Therapy: Liver Xenotransplantation. , 2018, , 347-377.		0
139	The forgotten French: The â€`heroic' era of kidney transplantation. Journal of Medical Biography, 2017, 25, 234-239.	0.1	1
140	Initial study of α1,3â€galactosyltransferase geneâ€knockout/ <scp>CD</scp> 46 pig fullâ€thickness corneal xenografts in rhesus monkeys. Xenotransplantation, 2017, 24, e12282.	2.8	18
141	Safe use of antiâ€ <scp>CD</scp> 154 monoclonal antibody in pig islet xenotransplantation in monkeys. Xenotransplantation, 2017, 24, e12283.	2.8	31
142	Klotho attenuated antibodyâ€mediated porcine endothelial cell activation and injury. Xenotransplantation, 2017, 24, e12286.	2.8	2
143	Transplantation of hepatocytes from genetically engineered pigs into baboons. Xenotransplantation, 2017, 24, e12289.	2.8	11
144	Development of retrocorneal membrane following pigâ€ŧoâ€monkey penetrating keratoplasty. Xenotransplantation, 2017, 24, e12276.	2.8	11

#	Article	IF	CITATIONS
145	Early clinical xenotransplantation experiences—An interview with Thomas E. Starzl, MD, PhD. Xenotransplantation, 2017, 24, e12306.	2.8	13
146	Angiopoietinâ€1 and angiopoietinâ€2 protect porcine iliac endothelial cells from human antibodyâ€mediated complementâ€dependent cytotoxicity through phosphatidylinositide 3â€kinase/ <scp>AKT</scp> pathway activation. Xenotransplantation, 2017, 24, e12309.	2.8	9
147	Altered expression of eNOS, prostacyclin synthase, prostaglandin G/H synthase, and thromboxane synthase in porcine aortic endothelial cells after exposure to human serum—relevance to xenotransplantation. Cell Biology International, 2017, 41, 798-808.	3.0	3
148	The impact of serum incubation time on IgM/IgG binding to porcine aortic endothelial cells. Xenotransplantation, 2017, 24, e12312.	2.8	6
149	Immunological and physiological observations in baboons with lifeâ€supporting genetically engineered pig kidney grafts. Xenotransplantation, 2017, 24, e12293.	2.8	174
150	Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation, 2017, 24, e12296.	2.8	36
151	Human ILâ€6, <scp>IL</scp> â€17, <scp>IL</scp> â€1î², and <scp>TNF</scp> ‱ differently regulate the express proâ€inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation, 2017, 24, e12291.	sion of 2.8	54
152	Renal xenotransplantation: experimental progress and clinical prospects. Kidney International, 2017, 91, 790-796.	5.2	44
153	Xenotransplantation. Current Opinion in Organ Transplantation, 2017, 22, 513-521.	1.6	82
154	Potential Antigens Involved in Delayed Xenograft Rejection in a Ggta1/Cmah Dko Pig-to-Monkey Model. Scientific Reports, 2017, 7, 10024.	3.3	17
155	Encapsulation of Human Islets Using a Biomimetic Self-Assembled Nanomatrix Gel for Protection against Cellular Inflammatory Responses. ACS Biomaterials Science and Engineering, 2017, 3, 2110-2119.	5.2	9
156	Regulation of Clinical Xenotransplantation—Time for a Reappraisal. Transplantation, 2017, 101, 1766-1769.	1.0	57
157	Financial aspects of organ procurement from deceased donors in the USA-Relevance to xenotransplantation. Xenotransplantation, 2017, 24, e12322.	2.8	8
158	JOINT <scp>FDA</scp> â€ <scp>IXA</scp> SYMPOSIUM, SEPTEMBER 20, 2017. Xenotransplantation, 2017, 24, e12365.	2.8	12
159	Low antiâ€pig antibody levels are key to the success of solid organ xenotransplantation: But is this sufficient?. Xenotransplantation, 2017, 24, e12360.	2.8	6
160	An Investigation of Extracellular Histones in Pig-To-Baboon Organ Xenotransplantation. Transplantation, 2017, 101, 2330-2339.	1.0	30
161	Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplantation, 2017, 26, 925-947.	2.5	60
162	Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation, 2017, 101, 1551-1558.	1.0	59

#	Article	IF	CITATIONS
163	Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning. Journal of Reproduction and Development, 2017, 63, 17-26.	1.4	45
164	The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation. Journal of Immunology Research, 2017, 2017, 1-11.	2.2	47
165	Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS ONE, 2017, 12, e0180768.	2.5	42
166	Thomas E. Starzl, MD, PhD, 1926–2017. Xenotransplantation, 2017, 24, .	2.8	1
167	Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. International Journal of Molecular Sciences, 2016, 17, 1232.	4.1	41
168	Sequence alignment analysis of proteins involved in platelet-endothelial cell interaction identifies molecular incompatibilities between Homo sapiens and Sus scrofa. Journal of Biomedical Engineering and Informatics, 2016, 3, 51.	0.2	1
169	Report from IPITA-TTS Opinion Leaders Meeting on the Future of \hat{I}^2 -Cell Replacement. Transplantation, 2016, 100, S1-S44.	1.0	66
170	Expression of NeuGc on Pig Corneas and Its Potential Significance in Pig Corneal Xenotransplantation. Cornea, 2016, 35, 105-113.	1.7	22
171	The pathobiology of pigâ€ŧoâ€primate xenotransplantation: a historical review. Xenotransplantation, 2016, 23, 83-105.	2.8	117
172	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 4: preâ€clinical efficacy and complication data required to justify a clinical trial. Xenotransplantation, 2016, 23, 46-52.	2.8	36
173	Progress in Clinical Encapsulated Islet Xenotransplantation. Transplantation, 2016, 100, 2301-2308.	1.0	83
174	Pig Liver Xenotransplantation. Transplantation, 2016, 100, 2039-2047.	1.0	44
175	Is successful orthotopic heart transplantation in the pigâ€toâ€nonâ€human primate model required before proceeding to a clinical trial?. Xenotransplantation, 2016, 23, 328-329.	2.8	4
176	Clinical Islet Xenotransplantation: A Step Forward. EBioMedicine, 2016, 12, 22-23.	6.1	13
177	Thyroid hormone: relevance to xenotransplantation. Xenotransplantation, 2016, 23, 293-299.	2.8	21
178	The role of genetically engineered pigs in xenotransplantation research. Journal of Pathology, 2016, 238, 288-299.	4.5	184
179	Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration?. Xenotransplantation, 2016, 23, 370-380.	2.8	34
180	Psychosocial challenges of xenotransplantation: the need for a multidisciplinary, religious, and cultural dialogue. Xenotransplantation, 2016, 23, 335-337.	2.8	16

#	Article	IF	CITATIONS
181	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 2b: genetically modified source pigs. Xenotransplantation, 2016, 23, 32-37.	2.8	25
182	Initial <i>in vitro</i> studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation, 2016, 23, 137-150.	2.8	43
183	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Executive summary. Xenotransplantation, 2016, 23, 3-13.	2.8	64
184	Hormone resuscitation therapy for brainâ€dead donors – is insulin beneficial or detrimental?. Clinical Transplantation, 2016, 30, 754-759.	1.6	13
185	Heart Xenotransplantation: Historical Background, Experimental Progress, and Clinical Prospects. Annals of Thoracic Surgery, 2016, 101, 1605-1613.	1.3	32
186	Thyroid hormone therapy and procurement of livers from brain-dead donors. Endocrine Research, 2016, 41, 270-273.	1.2	9
187	Endoscopic biopsy of islet transplants in the gastric submucosal space provides evidence of islet graft rejection in diabetic pigs. Islets, 2016, 8, 1-12.	1.8	10
188	Modifying the sugar icing on the transplantation cake. Glycobiology, 2016, 26, 571-581.	2.5	31
189	Effect of Rho-kinase Inhibitor, Y27632, on Porcine Corneal Endothelial Cell Culture, Inflammation and Immune Regulation. Ocular Immunology and Inflammation, 2016, 24, 579-593.	1.8	13
190	The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors. Clinical Epidemiology, 2015, 7, 17.	3.0	20
191	David K. C. Cooper, MD, PhD. Transplantation, 2015, 99, 1310-1311.	1.0	0
192	Characterization of the cellular infiltrate in bioprosthetic heart valves explanted from patients with structural valve deterioration. Xenotransplantation, 2015, 22, 406-407.	2.8	15
193	Pig kidney graft survival in a baboon for 136Âdays: longest lifeâ€supporting organ graft survival to date. Xenotransplantation, 2015, 22, 302-309.	2.8	180
194	Further evidence for sustained systemic inflammation in xenograft recipients (<scp>SIXR</scp>). Xenotransplantation, 2015, 22, 399-405.	2.8	47
195	In vitro exposure of pig neonatal isletlike cell clusters to human blood. Xenotransplantation, 2015, 22, 317-324.	2.8	14
196	Transgenic expression of human <scp>CD</scp> 46: does it reduce the primate T ell response to pig endothelial cells?. Xenotransplantation, 2015, 22, 487-489.	2.8	27
197	Pigâ€toâ€baboon heterotopic heart transplantation – exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockadeâ€based regimens. Xenotransplantation, 2015, 22, 211-220.	2.8	95
198	Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathwayâ€regulatory protein. Xenotransplantation, 2015, 22, 310-316.	2.8	79

#	Article	IF	CITATIONS
199	Myroides Infection in a Baboon After Prolonged Pig Kidney Graft Survival. Transplantation Direct, 2015, 1, 1-5.	1.6	5
200	Glucose metabolism in pigs expressing human genes under an insulin promoter. Xenotransplantation, 2015, 22, 70-79.	2.8	36
201	Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transplant Immunology, 2015, 32, 99-108.	1.2	53
202	Systemic inflammation in xenograft recipients (SIXR): A new paradigm in pig-to-primate xenotransplantation?. International Journal of Surgery, 2015, 23, 301-305.	2.7	36
203	Potential alternative approaches to xenotransplantation. International Journal of Surgery, 2015, 23, 322-326.	2.7	16
204	Increased Procurement of Thoracic Donor Organs After Thyroid Hormone Therapy. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 123-132.	0.6	20
205	A brief history of clinical xenotransplantation. International Journal of Surgery, 2015, 23, 205-210.	2.7	78
206	Immunobiological barriers to xenotransplantation. International Journal of Surgery, 2015, 23, 211-216.	2.7	83
207	The Potential of the Combination of CRISPR/Cas9 and Pluripotent Stem Cells to Provide Human Organs from Chimaeric Pigs. International Journal of Molecular Sciences, 2015, 16, 6545-6556.	4.1	37
208	The need for xenotransplantation as a source of organs and cells for clinical transplantation. International Journal of Surgery, 2015, 23, 199-204.	2.7	84
209	Xenograft bioprosthetic heart valves: Past, present and future. International Journal of Surgery, 2015, 23, 280-284.	2.7	136
210	Experimental hepatocyte xenotransplantation—a comprehensive review of the literature. Xenotransplantation, 2015, 22, 239-248.	2.8	12
211	The case for xenotransplantation. Clinical Transplantation, 2015, 29, 288-293.	1.6	23
212	Islet xenotransplantation: what is the optimal age of the isletâ€source pig?. Xenotransplantation, 2015, 22, 7-19.	2.8	55
213	In vitro testing of an anti-CD40 monoclonal antibody, clone 2C10, in primates and pigs. Transplant Immunology, 2015, 33, 185-191.	1.2	7
214	Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation, 2015, 22, 32-47.	2.8	108
215	Recent advances in understanding xenotransplantation: implications for the clinic. Expert Review of Clinical Immunology, 2015, 11, 1379-1390.	3.0	37
216	Development of a consensus protocol to quantify primate antiâ€nonâ€ <scp>G</scp> al xenoreactive antibodies using pig aortic endothelial cells. Xenotransplantation, 2014, 21, 555-566.	2.8	19

#	Article	IF	CITATIONS
217	Kidney xenotransplantation. Kidney International, 2014, 85, 265-275.	5.2	38
218	Streptozotocin-associated lymphopenia in cynomolgus monkeys. Islets, 2014, 6, e944441.	1.8	6
219	The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation, 2014, 21, 420-430.	2.8	31
220	Thyroid hormone and the stunned myocardium. Journal of Endocrinology, 2014, 223, R1-R8.	2.6	47
221	Progress in pigâ€toâ€nonâ€human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation, 2014, 21, 397-419.	2.8	121
222	Are there advantages in the use of specific pathogenâ€free baboons in pig organ xenotransplantation models?. Xenotransplantation, 2014, 21, 287-290.	2.8	18
223	Corneal blindness and xenotransplantation. Xenotransplantation, 2014, 21, 99-114.	2.8	75
224	Bioprosthetic heart valves of the future. Xenotransplantation, 2014, 21, 1-10.	2.8	79
225	Role of <scp>P</scp> â€selectin and <scp>P</scp> â€selectin glycoprotein ligandâ€1 interaction in the induction of tissue factor expression on human platelets after incubation with porcine aortic endothelial cells. Xenotransplantation, 2014, 21, 16-24.	2.8	14
226	A milestone in xenotransplantation research. Xenotransplantation, 2014, 21, 13-15.	2.8	4
227	Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation, 2014, 21, 72-83.	2.8	58
228	Thyroid Hormone Therapy in the Management of 63,593 Brain-Dead Organ Donors. Transplantation, 2014, 98, 1119-1127.	1.0	93
229	Distribution of Non-Gal Antigens in Pig Cornea. Cornea, 2014, 33, 390-397.	1.7	35
230	Plasma free triiodothyronine (<scp>fT</scp> 3) levels in baboons undergoing pig organ transplantation: relevance to early recovery of organ function. Xenotransplantation, 2014, 21, 582-583.	2.8	7
231	The Potential Role of Genetically-Modified Pig Mesenchymal Stromal Cells in Xenotransplantation. Stem Cell Reviews and Reports, 2014, 10, 79-85.	5.6	23
232	Hematopoietic chimerism following allotransplantation of the spleen, splenocytes or kidney in pigs. Transplant Immunology, 2014, 31, 125-133.	1.2	5
233	The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation, 2014, 21, 201-220.	2.8	34
234	Increased Soluble CD154 (CD40 Ligand) Levels in Xenograft Recipients Correlate With the Development of De Novo Anti-Pig IgG Antibodies. Transplantation, 2014, 97, 502-508.	1.0	25

#	Article	IF	CITATIONS
235	A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. International Journal of Ophthalmology, 2014, 7, 587-93.	1.1	33
236	Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cellular Immunology, 2013, 285, 23-30.	3.0	15
237	Comparison of Proliferative Capacity of Genetically-Engineered Pig and Human Corneal Endothelial Cells. Ophthalmic Research, 2013, 49, 127-138.	1.9	21
238	New Concepts of Immune Modulation in Xenotransplantation. Transplantation, 2013, 96, 937-945.	1.0	43
239	Islet xenotransplantation from genetically engineered pigs. Current Opinion in Organ Transplantation, 2013, 18, 695-702.	1.6	21
240	Human dominantâ€negative class <scp>ll</scp> transactivator transgenic pigs– effect on the human antiâ€pig <scp>T</scp> â€cell immune response and immune status. Immunology, 2013, 140, 39-46.	4.4	96
241	Systemic inflammation in xenograft recipients (SIXR). Xenotransplantation, 2013, 20, 52-52.	2.8	0
242	Histopathologic insights into the mechanism of antiâ€nonâ€Gal antibodyâ€mediated pig cardiac xenograft rejection. Xenotransplantation, 2013, 20, 292-307.	2.8	16
243	Minimal effect of bortezomib in reducing antiâ€pig antibodies in human leukocyte antigenâ€sensitized patients: a pilot study. Xenotransplantation, 2013, 20, 429-437.	2.8	5
244	Limitations of the pigâ€ŧoâ€nonâ€human primate islet transplantation model. Xenotransplantation, 2013, 20, 2-4.	2.8	10
245	Toward clinical islet xenotransplantation – are revisions to the IXA guidelines warranted?. Xenotransplantation, 2013, 20, 68-74.	2.8	14
246	Technique of Endoscopic Biopsy of Islet Allografts Transplanted into the Gastric Submucosal Space in Pigs. Cell Transplantation, 2013, 22, 2335-2344.	2.5	26
247	Is There a Correlation Between Anti-Pig Antibody Levels in Humans and Geographic Location During Childhood?. Transplantation, 2013, 96, 387-393.	1.0	9
248	The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation. Journal of Biomedical Research, 2013, 27, 249.	1.6	31
249	Early Islet Damage after Direct Exposure of Pig Islets to Blood: Has Humoral Immunity Been Underestimated?. Cell Transplantation, 2012, 21, 1791-1802.	2.5	56
250	A Brief History of Cross-Species Organ Transplantation. Baylor University Medical Center Proceedings, 2012, 25, 49-57.	0.5	122
251	John Collins Warren (1778-1856): An American surgeon in London. BMJ, The, 2012, 345, e8251-e8251.	6.0	0
252	T-Cell-Based Immunosuppressive Therapy Inhibits the Development of Natural Antibodies in Infant Baboons. Transplantation, 2012, 93, 769-776.	1.0	25

#	Article	IF	CITATIONS
253	Clinical xenotransplantation: the next medical revolution?. Lancet, The, 2012, 379, 672-683.	13.7	319
254	Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation, 2012, 19, 273-285.	2.8	102
255	Antiâ€gal antibodies in α1,3â€galactosyltransferase geneâ€knockout pigs. Xenotransplantation, 2012, 19, 305-310.	2.8	38
256	Costimulation blockade in pig artery patch xenotransplantation – a simple model to monitor the adaptive immune response in nonhuman primates. Xenotransplantation, 2012, 19, 221-232.	2.8	52
257	Platelet aggregation in humans and nonhuman primates: relevance to xenotransplantation. Xenotransplantation, 2012, 19, 233-243.	2.8	20
258	Human Tâ€cell proliferation in response to thrombinâ€activated GTKO pig endothelial cells. Xenotransplantation, 2012, 19, 311-316.	2.8	17
259	Clinical Islet Xenotransplantation. Diabetes, 2012, 61, 3046-3055.	0.6	117
260	Immunobiology of liver xenotransplantation. Expert Review of Clinical Immunology, 2012, 8, 621-634.	3.0	19
261	Comparison of hematologic, biochemical, and coagulation parameters in α1,3â€galactosyltransferase geneâ€knockout pigs, wildâ€type pigs, and four primate species. Xenotransplantation, 2012, 19, 342-354.	2.8	42
262	Pig-to-human xenotransplantation summit in Changsha, China. Xenotransplantation, 2012, 19, 327-328.	2.8	1
263	Genetically-Engineered Pig-to-Baboon Liver Xenotransplantation: Histopathology of Xenografts and Native Organs. PLoS ONE, 2012, 7, e29720.	2.5	35
264	Potential benefits and risks of clinical xenotransplantation. Transplant Research and Risk Management, 2012, , 7.	0.7	7
265	Adipose-derived mesenchymal stromal cells from genetically modified pigs: immunogenicity and immune modulatory properties. Cytotherapy, 2012, 14, 494-504.	0.7	28
266	Collagenous Colitis-like Condition in Immunosuppressed Infant Baboons. Inflammatory Bowel Diseases, 2012, 18, 1325-1332.	1.9	1
267	T-lymphocyte homeostasis and function in infant baboons: implications for transplantation. Transplant International, 2012, 25, 218-228.	1.6	3
268	Porcine alanine transaminase after liver alloâ€and xenotransplantation. Xenotransplantation, 2012, 19, 52-55.	2.8	18
269	The effect of Gal expression on pig cells on the human Tâ€cell xenoresponse. Xenotransplantation, 2012, 19, 56-63.	2.8	50
270	Clinical lung xenotransplantation – what donor genetic modifications may be necessary?. Xenotransplantation, 2012, 19, 144-158.	2.8	60

#	Article	IF	CITATIONS
271	Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transplant International, 2012, 25, 882-896.	1.6	22
272	The future of bioprosthetic heart valves. Indian Journal of Medical Research, 2012, 135, 150-1.	1.0	4
273	The immense potential of xenotransplantation in surgery. International Journal of Surgery, 2011, 9, 122-129.	2.7	37
274	Attempted Depletion of Passenger Leukocytes by Irradiation in Pigs. Journal of Transplantation, 2011, 2011, 1-9.	0.5	6
275	Xenotransplantation-The Future of Corneal Transplantation?. Cornea, 2011, 30, 371-378.	1.7	120
276	Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Current Opinion in Organ Transplantation, 2011, 16, 222-230.	1.6	19
277	Geneticallyâ€modified pig mesenchymal stromal cells: xenoantigenicity and effect on human Tâ€cell xenoresponses. Xenotransplantation, 2011, 18, 183-195.	2.8	28
278	Clinical pig liver xenotransplantation: how far do we have to go?. Xenotransplantation, 2011, 18, 158-167.	2.8	32
279	A Record of International Meetings on Xenotransplantation 1988-2010. Xenotransplantation, 2011, 18, 229-231.	2.8	3
280	Thrombocytopenia after pigâ€ŧoâ€baboon liver xenotransplantation: where do platelets go?. Xenotransplantation, 2011, 18, 320-327.	2.8	25
281	Relative efficiency of porcine and human cytotoxic T-lymphocyte antigen 4 immunoglobulin in inhibiting human CD4+ T-cell responses co-stimulated by porcine and human B7 molecules. Immunology, 2011, 134, 386-397.	4.4	23
282	Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. Journal of Thoracic and Cardiovascular Surgery, 2011, 142, 238-239.	0.8	3
283	Edward Gerjuoy: From Physics to Law and Back Again. Physics in Perspective, 2011, 13, 433-455.	0.7	0
284	Initial In Vitro Investigation of the Human Immune Response to Corneal Cells from Genetically Engineered Pigs. , 2011, 52, 5278.		47
285	Non-Human Primate Regulatory T Cells: Current Biology and Implications for Transplantation. Transplantation, 2010, 90, 811-816.	1.0	25
286	Hepatic Function After Genetically Engineered Pig Liver Transplantation in Baboons. Transplantation, 2010, 90, 483-493.	1.0	64
287	Recipient Tissue Factor Expression Is Associated With Consumptive Coagulopathy in Pigâ€toâ€Primate Kidney Xenotransplantation. American Journal of Transplantation, 2010, 10, 1556-1568.	4.7	100
288	The potential of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Xenotransplantation, 2010, 17, 3-5.	2.8	19

#	Article	IF	CITATIONS
289	Insulin secretion and glucose metabolism in alpha 1,3â€galactosyltransferase knockâ€out pigs compared to wildâ€ŧype pigs. Xenotransplantation, 2010, 17, 131-139.	2.8	34
290	Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation, 2010, 17, 197-206.	2.8	71
291	Outwitting evolution*. Xenotransplantation, 2010, 17, 171-180.	2.8	3
292	An in vitro model of pig liver xenotransplantation—pig complement is associated with reduced lysis of wildâ€ŧype and genetically modified pig cells. Xenotransplantation, 2010, 17, 370-378.	2.8	19
293	The immunology of corneal xenotransplantation: a review of the literature. Xenotransplantation, 2010, 17, 338-349.	2.8	55
294	Genetically Engineered Pigs as a Source for Clinical Red Blood Cell Transfusion. Clinics in Laboratory Medicine, 2010, 30, 365-380.	1.4	22
295	Pig heart xenotransplantation as a bridge to allotransplantation. Journal of Heart and Lung Transplantation, 2010, 29, 838-840.	0.6	13
296	Overcoming the barriers to xenotransplantation: prospects for the future. Expert Review of Clinical Immunology, 2010, 6, 219-230.	3.0	90
297	Effect of the αGal Epitope on the Response to Small Intestinal Submucosa Extracellular Matrix in a Nonhuman Primate Model. Tissue Engineering - Part A, 2009, 15, 3877-3888.	3.1	142
298	Endoscopic Gastric Submucosal Transplantation of Islets (ENDO-STI): Technique and Initial Results in Diabetic Pigs. American Journal of Transplantation, 2009, 9, 2485-2496.	4.7	72
299	Identification of αGal as the major target for human antiâ€pig antibodies. Xenotransplantation, 2009, 16, 47-49.	2.8	8
300	Global Consultation on Regulatory Requirements for Xenotransplantation in Clinical Trials. Xenotransplantation, 2009, 16, 58-60.	2.8	9
301	Production and characterization of transgenic pigs expressing porcine CTLA4â€Ig. Xenotransplantation, 2009, 16, 477-485.	2.8	124
302	Current status of xenotransplantation and prospects for clinical application. Xenotransplantation, 2009, 16, 263-280.	2.8	126
303	Monitoring of porcine and baboon cytomegalovirus infection in xenotransplantation. Xenotransplantation, 2009, 16, 535-536.	2.8	10
304	Chapter 4: Pre linical efficacy and complication data required to justify a clinical trial. Xenotransplantation, 2009, 16, 229-238.	2.8	57
305	Executive summary. Xenotransplantation, 2009, 16, 196-202.	2.8	94
306	Genetically engineered pig red blood cells for clinical transfusion: initial in vitro studies. Transfusion, 2009, 49, 2418-2429.	1.6	32

#	Article	IF	CITATIONS
307	Xenotransplantation of solid organs in the pig-to-primate model. Transplant Immunology, 2009, 21, 87-92.	1.2	121
308	Coagulation dysregulation as a barrier to xenotransplantation in the primate. Transplant Immunology, 2009, 21, 75-80.	1.2	70
309	The Innate Immune Response and Activation of Coagulation in α1,3-Galactosyltransferase Gene-Knockout Xenograft Recipients. Transplantation, 2009, 87, 805-812.	1.0	135
310	Pig Liver Xenotransplantation as a Bridge to Allotransplantation: Which Patients Might Benefit?. Transplantation, 2009, 88, 1041-1049.	1.0	50
311	Cyclophosphamide dosage in pigs. Annals of Transplantation, 2009, 14, 91-2.	0.9	2
312	How important is the anti-Gal antibody response following the implantation of a porcine bioprosthesis?. Journal of Heart Valve Disease, 2009, 18, 671-2.	0.5	9
313	Liver xenografts for the treatment of acute liver failure: Clinical and experimental experience and remaining immunologic barriers. Liver Transplantation, 2008, 14, 425-434.	2.4	34
314	<i>In vitro</i> investigation of pig cells for resistance to human antibody-mediated rejection. Transplant International, 2008, 21, 1163-1174.	1.6	94
315	Thrombotic Microangiopathy Associated with Humoral Rejection of Cardiac Xenografts from α1,3-Galactosyltransferase Gene-Knockout Pigs in Baboons. American Journal of Pathology, 2008, 172, 1471-1481.	3.8	132
316	Hormonal resuscitation therapy in the management of the brain-dead potential organ donor. International Journal of Surgery, 2008, 6, 3-4.	2.7	14
317	Frankenswine, or bringing home the bacon. Organogenesis, 2008, 4, 1-10.	1.2	1
318	Recent advances in pig-to-human organ and cell transplantation. Expert Opinion on Biological Therapy, 2008, 8, 1-4.	3.1	31
319	Expression of Tissue Factor and Initiation of Clotting by Human Platelets and Monocytes After Incubation With Porcine Endothelial Cells. Transplantation, 2008, 86, 702-709.	1.0	67
320	The Choice of Anatomical Site for Islet Transplantation. Cell Transplantation, 2008, 17, 1005-1014.	2.5	95
321	Update: cardiac xenotransplantation. Current Opinion in Organ Transplantation, 2008, 13, 531-535.	1.6	8
322	Atorvastatin Down-Regulates the Primate Cellular Response to Porcine Aortic Endothelial Cells In Vitro. Transplantation, 2008, 86, 733-737.	1.0	23
323	Safe Induction of Diabetes by High-Dose Streptozotocin in Pigs. Pancreas, 2008, 36, 31-38.	1.1	38
324	Suppressive Efficacy and Proliferative Capacity of Human Regulatory T Cells in Allogeneic and Xenogeneic Responses. Transplantation, 2008, 86, 1452-1462.	1.0	51

#	Article	IF	CITATIONS
325	α1,3-Galactosyltransferase Gene-Knockout Pigs for Xenotransplantation: Where Do We Go From Here?. Transplantation, 2007, 84, 1-7.	1.0	83
326	Reduction of Early Graft Loss After Intraportal Porcine Islet Transplantation in Monkeys. Transplantation, 2007, 83, 202-210.	1.0	75
327	Response to Commentaries on "α1,3-Galactosyltransferase Gene-Knockout Pigs for Xenotransplantation: Where Do We Go From Here?― Transplantation, 2007, 84, 1212-1213.	1.0	1
328	Gene Expression of Porcine Lymphotrophic Herpesvirus-1 in Miniature Swine with Posttransplant Lymphoproliferative Disorder. Transplantation, 2007, 83, 87-90.	1.0	26
329	Pig–to–Non-human Primate Heart Transplantation: Immunologic Progress Over 20 Years. Journal of Heart and Lung Transplantation, 2007, 26, 210-218.	0.6	20
330	Progress in xenotransplantation following the introduction of gene-knockout technology. Transplant International, 2007, 20, 107-17.	1.6	42
331	Late onset of development of natural anti-nonGal antibodies in infant humans and baboons: implications for xenotransplantation in infants. Transplant International, 2007, 20, 1050-1058.	1.6	53
332	Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies. Xenotransplantation, 2007, 14, 74-82.	2.8	76
333	The pig-to-primate immune response: relevance for xenotransplantation. Xenotransplantation, 2007, 14, 227-235.	2.8	12
334	Acute gastric dilatation after porcine islet transplantation in a cynomolgus monkey ? case history and review of the literature. Xenotransplantation, 2007, 14, 265-270.	2.8	15
335	Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation, 2007, 14, 288-297.	2.8	161
336	Hormonal Therapy of the Brain-Dead Organ Donor: Experimental and Clinical Studies. Transplantation, 2006, 82, 1396-1401.	1.0	169
337	Immunologic Benefits of Spleen Transplantation in the Absence of Graft-Versus-Host Disease. Annals of Surgery, 2006, 243, 710-711.	4.2	2
338	Induction of Diabetes in Cynomolgus Monkeys With High-dose Streptozotocin. Pancreas, 2006, 33, 287-292.	1.1	34
339	Elicited Antibodies in Baboons Exposed to Tissues from ??1,3-Galactosyltransferase Gene-Knockout Pigs. Transplantation, 2006, 81, 1058-1062.	1.0	36
340	Allosensitization Does Not Increase the Risk of Xenoreactivity to ??1,3-Galactosyltransferase Gene-Knockout Miniature Swine in Patients on Transplantation Waiting Lists. Transplantation, 2006, 82, 314-319.	1.0	71
341	Incidence and cytotoxicity of antibodies in cynomolgus monkeys directed to nonGal antigens, and their relevance for experimental models. Transplant International, 2006, 19, 158-165.	1.6	44
342	Allosensitized humans are at no greater risk of humoral rejection of GT-KO pig organs than other humans. Xenotransplantation, 2006, 13, 357-365.	2.8	93

#	Article	IF	CITATIONS
343	Antibodies directed to pig non-Gal antigens in na \tilde{A} ve and sensitized baboons. Xenotransplantation, 2006, 13, 400-407.	2.8	68
344	Extended coagulation profiles of healthy baboons and of baboons rejecting GT-KO pig heart grafts. Xenotransplantation, 2006, 13, 522-528.	2.8	25
345	Measurement of anti-CD154 monoclonal antibody in primate sera by competitive inhibition ELISA. Xenotransplantation, 2006, 13, 566-570.	2.8	10
346	Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 2006, 13, 488-499.	2.8	175
347	Primitive hematopoietic cell populations reside in the spleen: Studies in the pig, baboon, and human. Experimental Hematology, 2006, 34, 1573-1582.	0.4	48
348	Porcine Hematopoietic Progenitor Cell Transplantation in Nonhuman Primates: A Review of Progress. Transplantation, 2005, 79, 1-9.	1.0	47
349	Immunological Unresponsiveness in Chimeric Miniature Swine following MHC-Mismatched Spleen Transplantation. Transplantation, 2005, 80, 1791-1804.	1.0	15
350	α1,3-Galactosyltransferase Gene-Knockout Pig Heart Transplantation in Baboons with Survival Approaching 6 Months. Transplantation, 2005, 80, 1493-1500.	1.0	178
351	How strong is the T cell response in the pig-to-primate model?. Xenotransplantation, 2005, 12, 85-87.	2.8	16
352	Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation, 2005, 12, 59-62.	2.8	49
353	Reducing Gal expression on the pig organ - a retrospective review. Xenotransplantation, 2005, 12, 278-285.	2.8	24
354	Carbohydrates in xenotransplantation. Immunology and Cell Biology, 2005, 83, 396-404.	2.3	113
355	Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nature Medicine, 2005, 11, 29-31.	30.7	645
356	Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nature Medicine, 2005, 11, 32-34.	30.7	560
357	Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nature Medicine, 2005, 11, 1295-1298.	30.7	312
358	Histopathology of spleen allograft rejection in miniature swine. International Journal of Experimental Pathology, 2005, 86, 57-66.	1.3	11
359	Heart Transplantation: The Contributions of Christiaan Barnard and the University of Cape Town/Groote Schuur Hospital. World Journal of Surgery, 2005, 29, 953-961.	1.6	34
360	Activation of Porcine Cytomegalovirus, but Not Porcine Lymphotropic Herpesvirus, in Pigâ€ŧoâ€Baboon Xenotransplantation. Journal of Infectious Diseases, 2004, 189, 1628-1633.	4.0	60

#	Article	IF	CITATIONS
361	Relative effects of GAL+ and GALlow/- porcine hematopoietic cells on primate platelet aggregation and endothelial cell activation: implications for the induction of mixed hematopoietic chimerism in the pig-to-primate model. Xenotransplantation, 2004, 11, 72-77.	2.8	6
362	Initial investigation of the potential of modified porcine erythrocytes for transfusion in primates. Xenotransplantation, 2004, 11, 18-26.	2.8	19
363	Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation, 2004, 11, 416-425.	2.8	125
364	Investigation of red blood cells from α1,3-galactosyltransferase-knockout pigs for human blood transfusion. Transfusion, 2004, 44, 1004-1012.	1.6	21
365	Suppression of Natural and Elicited Antibodies in Pig-to-Baboon Heart Transplantation Using a Human Anti-Human CD154 mAb-Based Regimen. American Journal of Transplantation, 2004, 4, 363-372.	4.7	129
366	α1,3-Galactosyltransferase Gene-Knockout Miniature Swine Produce Natural Cytotoxic Anti-Gal Antibodies. Transplantation, 2004, 78, 15-20.	1.0	77
367	Posttransplant Lymphoproliferative Disease After Allogeneic Transplantation of the Spleen in Miniature Swine. Transplantation, 2004, 78, 286-291.	1.0	26
368	ACUTE VASCULAR REJECTION OF XENOGRAFTS: ROLES OF NATURAL AND ELICITED XENOREACTIVE ANTIBODIES IN ACTIVATION OF VASCULAR ENDOTHELIAL CELLS AND INDUCTION OF PROCOAGULANT ACTIVITY. Transplantation, 2004, 77, 1735-1741.	1.0	84
369	Reduction of Consumptive Coagulopathy Using Porcine Cytomegalovirus-Free Cardiac Porcine Grafts in Pig-to-Primate Xenotransplantation. Transplantation, 2004, 78, 1449-1453.	1.0	75
370	The surgical anatomy of experimental and clinical thoracic organ transplantation. Texas Heart Institute Journal, 2004, 31, 61-8.	0.3	3
371	Reduced Efficacy of Ganciclovir Against Porcine and Baboon Cytomegalovirus in Pig-to-Baboon Xenotransplantation. American Journal of Transplantation, 2003, 3, 1057-1064.	4.7	53
372	Correlation of Biochemical and Hematological Changes with Graft Failure Following Pig Heart and Kidney Transplantation in Baboons. American Journal of Transplantation, 2003, 3, 1510-1519.	4.7	42
373	Pig kidney transplantation in baboons treated intravenously with a bovine serum albumin-Galα1-3Gal conjugate. Xenotransplantation, 2003, 10, 606-614.	2.8	15
374	Porcine red blood cells as a source of blood transfusion in humans. Xenotransplantation, 2003, 10, 384-386.	2.8	21
375	6th Congress of the International Xenotransplantation Association. Xenotransplantation, 2003, 10, 7-9.	2.8	2
376	Depletion of anti-Gal antibodies by the intravenous infusion of Gal type 2 and 6 glycoconjugates in baboons. Xenotransplantation, 2003, 10, 357-367.	2.8	14
377	ABO-incompatible organ and bone marrow transplantation: current status. Transplant International, 2003, 16, 291-299.	1.6	55
378	Can spleen transplantation induce tolerance? A review of the literature. Transplant International, 2003, 16, 451-460.	1.6	21

#	Article	IF	CITATIONS
379	Porcine cytomegalovirus and coagulopathy in pig-to-primate xenotransplantation1. Transplantation, 2003, 75, 1841-1847.	1.0	88
380	Xenogeneic thymokidney and thymic tissue transplantation in a pig-to-baboon model: I. evidence for pig-specific T-cell unresponsiveness1. Transplantation, 2003, 75, 1615-1624.	1.0	72
381	Xenogeneic thymus transplantation in a pig-to-baboon model1. Transplantation, 2003, 75, 282-291.	1.0	23
382	Activation of Cytomegalovirus in Pig-to-Primate Organ Xenotransplantation. Journal of Virology, 2002, 76, 4734-4740.	3.4	116
383	Therapeutic Strategies for Xenotransplantation. , 2002, , 237-289.		0
384	Will the Pig Solve the Transplantation Backlog?. Annual Review of Medicine, 2002, 53, 133-147.	12.2	267
385	Anti-Galα1-3Gal IgM and IgG antibody levels in sera of humans and old world non-human primates. Xenotransplantation, 2002, 9, 148-154.	2.8	56
386	Anti-CD154 monoclonal antibody and thromboembolism revisited. Transplantation, 2002, 74, 416.	1.0	53
387	Assessment of methotrexate as a potential immunosuppressive agent in baboons. Journal of Heart and Lung Transplantation, 2001, 20, 1335-1339.	0.6	5
388	MODULATION OF PLATELET AGGREGATION IN BABOONS: IMPLICATIONS FOR MIXED CHIMERISM IN XENOTRANSPLANTATION. I. THE ROLES OF INDIVIDUAL COMPONENTS OF A TRANSPLANTATION CONDITIONING REGIMEN AND OF PIG PERIPHERAL BLOOD PROGENITOR CELLS. Transplantation, 2001, 72, 1299-1305.	1.0	22
389	MECHANISMS OF THROMBOTIC MICROANGIOPATHY FOLLOWING XENOGENEIC HEMATOPOIETIC PROGENITOR CELL TRANSPLANTATION1. Transplantation, 2001, 71, 1601-1609.	1.0	39
390	CLEARANCE OF MOBILIZED PORCINE PERIPHERAL BLOOD PROGENITOR CELLS IS DELAYED BY DEPLETION OF THE PHAGOCYTIC RETICULOENDOTHELIAL SYSTEM IN BABOONS1. Transplantation, 2001, 72, 1278-1285.	1.0	53
391	Xenotransplantation. Advances in Immunology, 2001, 79, 129-223.	2.2	83
392	Effects of specific anti-B and/or anti-plasma cell immunotherapy on antibody production in baboons: depletion of CD20- and CD22-positive B cells does not result in significantly decreased production of anti-αGal antibody. Xenotransplantation, 2001, 8, 157-171.	2.8	59
393	Christiaan neethling barnard. Clinical Cardiology, 2001, 24, 527-528.	1.8	3
394	Venular thrombosis is the key event in the pathogenesis of antibody-mediated cardiac rejection. Xenotransplantation, 2000, 7, 31-41.	2.8	64
395	Disordered regulation of coagulation and platelet activation in xenotransplantation. Xenotransplantation, 2000, 7, 166-176.	2.8	154
396	Inhibition of platelet aggregation in baboons: therapeutic implications for xenotransplantation. Xenotransplantation, 2000, 7, 247-257.	2.8	45

#	Article	IF	CITATIONS
397	Acute Humoral Xenograft Rejection: Destruction of the Microvascular Capillary Endothelium in Pig-to-Nonhuman Primate Renal Grafts. Laboratory Investigation, 2000, 80, 815-830.	3.7	88
398	Xenotransplantation: the challenge to current psychosocial attitudes. Progress in Transplantation, 2000, 10, 217-225.	0.7	19
399	Intravenous synthetic αgal saccharides delay hyperacute rejection following pigâ€toâ€baboon heart transplantation. Xenotransplantation, 1999, 6, 36-42.	2.8	46
400	Lack of variation in αgal expression on lymphocytes in miniature swine of different genotypes. Xenotransplantation, 1999, 6, 43-51.	2.8	11
401	The problem of anti-pig antibodies in pig-to-primate xenografting: current and novel methods of depletion and/or suppression of production of anti-pig antibodies. Xenotransplantation, 1999, 6, 157-168.	2.8	80
402	Anti-Gal, α-Gal Epitopes, and Xenotransplantation. , 1999, 32, 229-257.		48
403	PORCINE KIDNEY AND HEART TRANSPLANTATION IN BABOONS UNDERGOING A TOLERANCE INDUCTION REGIMEN AND ANTIBODY ADSORPTION1. Transplantation, 1999, 67, 18-30.	1.0	155
404	SERUM CYTOTOXICITY TO PIG CELLS AND ANTI-??GAL ANTIBODY LEVEL AND SPECIFICITY IN HUMANS AND BABOONS. Transplantation, 1999, 67, 658-665.	1.0	31
405	TRANSFER OF SWINE MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II GENES INTO AUTOLOGOUS BONE MARROW CELLS OF BABOONS FOR THE INDUCTION OF TOLERANCE ACROSS XENOGENEIC BARRIERS. Transplantation, 1999, 67, 1119-1128.	1.0	44
406	Xenoantigens and xenoantibodies. Xenotransplantation, 1998, 5, 6-17.	2.8	147
407	Depletion of antiâ€Galα1–3Gal antibody in baboons by specific αâ€Gal immunoaffinity columns. Xenotransplantation, 1998, 5, 122-131.	2.8	116
408	Pharmacologic immunosuppressive therapy and extracorporeal immunoadsorption in the suppression of antiâ€Î±Gal antibody in the baboon. Xenotransplantation, 1998, 5, 274-283.	2.8	62
409	INTRAVENOUS INFUSION OF Gal??1-3Gal OLIGOSACCHARIDES IN BABOONS DELAYS HYPERACUTE REJECTION OF PORCINE HEART XENOGRAFTS. Transplantation, 1998, 65, 346-353.	1.0	127
410	ANTI-Gal??1-3Gal ANTIBODY RESPONSE TO PORCINE BONE MARROW IN UNMODIFIED BABOONS AND BABOONS CONDITIONED FOR TOLERANCE INDUCTION1. Transplantation, 1998, 66, 176-182.	1.0	77
411	DISCORDANT ORGAN XENOTRANSPLANTATION IN PRIMATES. Transplantation, 1998, 66, 547-561.	1.0	208
412	DISSEMINATED INTRAVASCULAR COAGULATION IN ASSOCIATION WITH THE DELAYED REJECTION OF PIG-TO-BABOON RENAL XENOGRAFTS. Transplantation, 1998, 66, 1439-1450.	1.0	125
413	Returning to Work After Heart Transplantation: A Replication. Research on Social Work Practice, 1997, 7, 370-377.	1.9	10
414	The potential role of thyroid hormone substitutes in cardiac surgery and transplantation. The Asia Pacific Journal of Thoracic & Cardiovascular Surgery, 1996, 5, 40-46.	0.0	8

#	Article	IF	CITATIONS
415	The reducing end of αGal oligosaccharides contributes to their efficiency in blocking natural antibodies of human and baboon sera. Transplant International, 1996, 9, 98-101.	1.6	27
416	Ethical aspects of xenotransplantation of current importance. Xenotransplantation, 1996, 3, 264-274.	2.8	19
417	The reducing end of ?Gal oligosaccharides contributes to their efficiency in blocking natural antibodies of human and baboon sera. Transplant International, 1996, 9, 98-101.	1.6	13
418	Detection, immunoabsorption, and inhibition of cytotoxic activity of antiâ€Î±Gal antibodies using newly developed substances with synthetic Gal α1–3Gal disaccharide epitopes. Xenotransplantation, 1995, 2, 98-106.	2.8	70
419	Inhibition of human antiâ€Î±Gal IgG by oligosaccharides derived from porcine stomach mucin. Xenotransplantation, 1995, 2, 279-288.	2.8	12
420	Oligosaccharides and Discordant Xenotransplantation. Immunological Reviews, 1994, 141, 31-58.	6.0	249
421	Monomorphic and polymorphic carbohydrate antigens on pig tissues: implications for organ xenotransplantation in the pig-to-human model. Transplant International, 1994, 7, 405-413.	1.6	48
422	Variability of antiâ€Î±Gal antibodies in human serum and their relation to serum cytotoxicity against pig cells. Xenotransplantation, 1994, 1, 58-65.	2.8	56
423	PROTECTION OF PIG KIDNEY (PK15) CELLS FROM THE CYTOTOXIC EFFECT OF ANTI-PIG ANTIBODIES BY α-GALACTOSYL OLIGOSACCHARIDES1. Transplantation, 1994, 57, 959-963.	1.0	100
424	Monomorphic and polymorphic carbohydrate antigens on pig tissues: implications for organ xenotransplantation in the pig-to-human model. Transplant International, 1994, 7, 405-413.	1.6	17
425	CARBOHYDRATE ANTIGENS OF PIG TISSUES REACTING WITH HUMAN NATURAL ANTIBODIES AS POTENTIAL TARGETS FOR HYPERACUTE VASCULAR REJECTION IN PIG-TO-MAN ORGAN XENOTRANSPLANTATION1. Transplantation, 1993, 56, 1433-1442.	1.0	379
426	Inotropic Effect of Triiodothyronine Following Myocardial Ischemia and Cardiopulmonary Bypass: An Experimental Study in Pigs. Annals of Thoracic Surgery, 1988, 45, 50-55.	1.3	111
427	CHANGE FROM AEROBIC TO ANAEROBIC METABOLISM AFTER BRAIN DEATH, AND REVERSAL FOLLOWING TRIIODOTHYRONINE THERAPY. Transplantation, 1988, 45, 32-36.	1.0	246
428	Cardiac and Pulmonary Histopathology in Baboons Following Genetically-Engineered Pig Orthotopic Heart Transplantation. Annals of Transplantation, 0, 27, .	0.9	6