Chuan-Ling Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654179/publications.pdf Version: 2024-02-01

CHUAN-LINC SL

#	Article	IF	CITATIONS
1	Tailoring Silver Nanowire Nanocomposite Interfaces to Achieve Superior Stretchability, Durability, and Stability in Transparent Conductors. Nano Letters, 2022, 22, 3784-3792.	9.1	57
2	Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	21
3	Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon, 2022, 196, 819-827.	10.3	91
4	Bark extractives of Catalpa bungei: isolation, purification and structural elucidation of triterpene, phytosterol and flavonoid derivatives. Wood Science and Technology, 2021, 55, 231-241.	3.2	0
5	Biomedical Applications of Bacterial Cellulose based Composite Hydrogels. Current Medicinal Chemistry, 2021, 28, 8319-8332.	2.4	13
6	Multifunctional Cellulose Nanopaper with Superior Water-Resistant, Conductive, and Antibacterial Properties Functionalized with Chitosan and Polypyrrole. ACS Applied Materials & Interfaces, 2021, 13, 32115-32125.	8.0	61
7	A flow-through reactor for fast fractionation and production of structure-preserved lignin. Industrial Crops and Products, 2021, 164, 113350.	5.2	9
8	Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products, 2021, 165, 113442.	5.2	78
9	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	5.2	157
10	Improvement of fermentable sugar recovery and bioethanol production from eucalyptus wood chips with the combined pretreatment of NH4Cl impregnation and refining. Industrial Crops and Products, 2021, 167, 113503.	5.2	10
11	Novel Surfactant-Assisted Hydrothermal Fabrication of a Lignin Microsphere as a Green Reducer and Carrier for Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 17085-17095.	6.7	6
12	Falling Leaves Return to Their Roots: A Review on the Preparation of γâ€Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. ChemSusChem, 2020, 13, 6461-6476.	6.8	52
13	Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 2020, 13, 4284-4295.	6.8	188
14	Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl ₃ -Catalyzed Innocuous Citric Acid Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16691-16700.	6.7	96
15	Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 7536-7562.	6.7	293
16	Using Lignin Monomer As a Novel Capping Agent for Efficient Acid-Catalyzed Depolymerization of High Molecular Weight Lignin to Improve Its Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 9104-9114.	6.7	23
17	Lignin Fractionation for Reduced Heterogeneity in Self-Assembly Nanosizing: Toward Targeted Preparation of Uniform Lignin Nanoparticles with Small Size. ACS Sustainable Chemistry and Engineering, 2020, 8, 9174-9183.	6.7	94
18	Graft Copolymerization of Acrylonitrile and Ethyl Acrylate onto <i>Pinus Roxburghii</i> Wood Surface Enhanced Physicochemical Properties and Antibacterial Activity. Journal of Chemistry, 2020, 2020, 1-16.	1.9	8

CHUAN-LING SI

#	Article	IF	CITATIONS
19	Mild One-Pot Lignocellulose Fractionation Based on Acid-Catalyzed Biphasic Water/Phenol System to Enhance Components' Processability. ACS Sustainable Chemistry and Engineering, 2020, 8, 2772-2782.	6.7	34
20	Using Green Î ³ -Valerolactone/Water Solvent To Decrease Lignin Heterogeneity by Gradient Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10112-10120.	6.7	68
21	Facile Extraction of Thermally Stable and Dispersible Cellulose Nanocrystals with High Yield via a Green and Recyclable FeCl ₃ -Catalyzed Deep Eutectic Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7200-7208.	6.7	122
22	Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 2018, 1-25.	2.7	162
23	Chemocatalytic Conversion of Cellulose into Key Platform Chemicals. International Journal of Polymer Science, 2018, 2018, 1-21.	2.7	21
24	Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim. Journal of the Korean Wood Science and Technology, 2018, 46, 118-124.	3.0	4
25	Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. Journal of Materials Science, 2017, 52, 13689-13699.	3.7	27