Chuan-Ling Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654179/publications.pdf

Version: 2024-02-01

430874 610901 1,695 25 18 24 citations h-index g-index papers 26 26 26 1234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 7536-7562.	6.7	293
2	Biomass Fractionation and Lignin Fractionation towards Lignin Valorization. ChemSusChem, 2020, 13, 4284-4295.	6.8	188
3	Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 2018, 1-25.	2.7	162
4	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	5.2	157
5	Facile Extraction of Thermally Stable and Dispersible Cellulose Nanocrystals with High Yield via a Green and Recyclable FeCl ₃ -Catalyzed Deep Eutectic Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7200-7208.	6.7	122
6	Highly Efficient and Sustainable Preparation of Carboxylic and Thermostable Cellulose Nanocrystals via FeCl ₃ -Catalyzed Innocuous Citric Acid Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16691-16700.	6.7	96
7	Lignin Fractionation for Reduced Heterogeneity in Self-Assembly Nanosizing: Toward Targeted Preparation of Uniform Lignin Nanoparticles with Small Size. ACS Sustainable Chemistry and Engineering, 2020, 8, 9174-9183.	6.7	94
8	Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon, 2022, 196, 819-827.	10.3	91
9	Lignin fractionation: Effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Industrial Crops and Products, 2021, 165, 113442.	5 . 2	78
10	Using Green \hat{I}^3 -Valerolactone/Water Solvent To Decrease Lignin Heterogeneity by Gradient Precipitation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10112-10120.	6.7	68
11	Multifunctional Cellulose Nanopaper with Superior Water-Resistant, Conductive, and Antibacterial Properties Functionalized with Chitosan and Polypyrrole. ACS Applied Materials & Emp; Interfaces, 2021, 13, 32115-32125.	8.0	61
12	Tailoring Silver Nanowire Nanocomposite Interfaces to Achieve Superior Stretchability, Durability, and Stability in Transparent Conductors. Nano Letters, 2022, 22, 3784-3792.	9.1	57
13	Falling Leaves Return to Their Roots: A Review on the Preparation of γâ€Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. ChemSusChem, 2020, 13, 6461-6476.	6.8	52
14	Mild One-Pot Lignocellulose Fractionation Based on Acid-Catalyzed Biphasic Water/Phenol System to Enhance Components' Processability. ACS Sustainable Chemistry and Engineering, 2020, 8, 2772-2782.	6.7	34
15	Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. Journal of Materials Science, 2017, 52, 13689-13699.	3.7	27
16	Using Lignin Monomer As a Novel Capping Agent for Efficient Acid-Catalyzed Depolymerization of High Molecular Weight Lignin to Improve Its Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 9104-9114.	6.7	23
17	Chemocatalytic Conversion of Cellulose into Key Platform Chemicals. International Journal of Polymer Science, 2018, 2018, 1-21.	2.7	21
18	Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	6.8	21

#	Article	IF	CITATIONS
19	Biomedical Applications of Bacterial Cellulose based Composite Hydrogels. Current Medicinal Chemistry, 2021, 28, 8319-8332.	2.4	13
20	Improvement of fermentable sugar recovery and bioethanol production from eucalyptus wood chips with the combined pretreatment of NH4Cl impregnation and refining. Industrial Crops and Products, 2021, 167, 113503.	5.2	10
21	A flow-through reactor for fast fractionation and production of structure-preserved lignin. Industrial Crops and Products, 2021, 164, 113350.	5.2	9
22	Graft Copolymerization of Acrylonitrile and Ethyl Acrylate onto <i>Pinus Roxburghii</i> Wood Surface Enhanced Physicochemical Properties and Antibacterial Activity. Journal of Chemistry, 2020, 2020, 1-16.	1.9	8
23	Novel Surfactant-Assisted Hydrothermal Fabrication of a Lignin Microsphere as a Green Reducer and Carrier for Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 17085-17095.	6.7	6
24	Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim. Journal of the Korean Wood Science and Technology, 2018, 46, 118-124.	3.0	4
25	Bark extractives of Catalpa bungei: isolation, purification and structural elucidation of triterpene, phytosterol and flavonoid derivatives. Wood Science and Technology, 2021, 55, 231-241.	3.2	0