Xiaochun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6653069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 2008, 322, 940-942.	12.6	873
2	Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507, 90-93.	27.8	663
3	Daily Mean Sea Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–2003. Journal of Climate, 2006, 19, 2717-2742.	3.2	165
4	Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biology and Biochemistry, 2021, 161, 108393.	8.8	102
5	Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth and Planetary Science Letters, 2011, 301, 307-316.	4.4	54
6	A tree-ring record of 500-year dry-wet changes in northern Tibet, China. Holocene, 2008, 18, 579-588.	1.7	45
7	Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees - Structure and Function, 2008, 22, 197-204.	1.9	41
8	Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees - Structure and Function, 2009, 23, 875-885.	1.9	40
9	Recent rising temperatures drive younger and southern Korean pine growth decline. Science of the Total Environment, 2019, 649, 1105-1116.	8.0	39
10	Evidence of solar signals in tree rings of Smith fir from Sygera Mountain in southeast Tibet. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1959-1966.	1.6	35
11	Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. Trees - Structure and Function, 2017, 31, 415-427.	1.9	35
12	Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568. PLoS ONE, 2011, 6, e22740.	2.5	33
13	Pacificâ€Atlantic Ocean influence on wildfires in northeast China (1774 to 2010). Geophysical Research Letters, 2017, 44, 1025-1033.	4.0	33
14	Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China. Dendrochronologia, 2017, 45, 113-122.	2.2	33
15	Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China. Dendrochronologia, 2018, 50, 52-63.	2.2	28
16	Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries – A tree-ring perspective. Dendrochronologia, 2013, 31, 297-310.	2.2	26
17	Tree ring–based minimum temperature reconstruction in the central Hengduan Mountains, China. Theoretical and Applied Climatology, 2020, 141, 359-370.	2.8	21
18	Influence of the Atlantic Multidecadal Oscillation on drought in northern Daxing'an Mountains, Northeast China, Catena, 2021, 198, 105017	5.0	20

XIAOCHUN WANG

#	Article	IF	CITATIONS
19	A 211â€year growing season temperature reconstruction using treeâ€ring width in Zhangguangcai Mountains, Northeast China: linkages to the Pacific and Atlantic Oceans. International Journal of Climatology, 2017, 37, 3145-3153.	3.5	19
20	Tree ring-based temperature reconstruction over the past 186Âyears for the Miyaluo Natural Reserve, western Sichuan Province of China. Theoretical and Applied Climatology, 2015, 120, 495-506.	2.8	18
21	A 368-year maximum temperature reconstruction based on tree-ring data in the northwestern Sichuan Plateau (NWSP), China. Climate of the Past, 2016, 12, 1485-1498.	3.4	18
22	A 414-year tree-ring-based April–July minimum temperature reconstruction and its implications for the extreme climate events, northeast China. Climate of the Past, 2016, 12, 1879-1888.	3.4	18
23	Differences in tree and shrub growth responses to climate change in a boreal forest in China. Dendrochronologia, 2020, 63, 125744.	2.2	17
24	A 424-year tree-ring-based Palmer Drought Severity Index reconstruction of <i>CedrusÂdeodara</i> ÂD. Don from the Hindu KushÂrange of Pakistan: linkages to ocean oscillations. Climate of the Past, 2020, 16, 783-798.	3.4	17
25	Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quaternary Science Reviews, 2021, 251, 106712.	3.0	17
26	The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. Forest Ecology and Management, 2018, 425, 21-26.	3.2	16
27	Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing'an Mountains, China. Dendrochronologia, 2019, 58, 125645.	2.2	16
28	Moisture-driven changes in the sensitivity of the radial growth of Picea crassifolia to temperature, northeastern Tibetan Plateau. Dendrochronologia, 2020, 64, 125761.	2.2	16
29	Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. Ecological Indicators, 2021, 133, 108389.	6.3	16
30	Treeâ€ringâ€based temperature reconstruction for the Wolong Natural Reserve, western Sichuan Plateau of China. International Journal of Climatology, 2015, 35, 3296-3307.	3.5	15
31	Different response of earlywood vessel features of Fraxinus mandshurica to rapid warming in warm-dry and cold-wet areas. Agricultural and Forest Meteorology, 2021, 307, 108523.	4.8	14
32	Divergent tree growth response to recent climate warming of <i>Abies faxoniana</i> at alpine treelines in east edge of Tibetan Plateau. Ecological Research, 2018, 33, 303-311.	1.5	13
33	Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming. Agricultural and Forest Meteorology, 2019, 276-277, 107631.	4.8	13
34	Spatial Variability in Growth limate Relationships of Amur Cork Tree (<i>Phellodendron) Tj ETQq0 0 0 rgBT /O Geophysical Research G: Biogeosciences, 2018, 123, 1625-1636.</i>	verlock 10 3.0	Tf 50 147 Tc 11
35	Regional Scale Temperature Rather than Precipitation Determines Vessel Features in Earlywood of Manchurian Ash in Temperate Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005955.	3.0	9
36	Climate change increased the intrinsic water use efficiency of Larix gmelinii in permafrost degradation areas, but did not promote its growth. Agricultural and Forest Meteorology, 2022, 320, 108957.	4.8	9

XIAOCHUN WANG

#	Article	IF	CITATIONS
37	Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Scientific Reports, 2016, 6, 28435.	3.3	8
38	Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia, 2020, 63, 125751.	2.2	8
39	Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia. Climate Dynamics, 2017, 49, 1917-1931.	3.8	7
40	Response of <i>Pinus sylvestris</i> var. <i>mongolica</i> to water change and drought history reconstruction in the past 260 years, northeast China. Climate of the Past, 2018, 14, 1213-1228.	3.4	7
41	Climate sensitivity of conifer growth doesn't reveal distinct low–high dipole along the elevation gradient in the Wolong National Natural Reserve, SW China. Dendrochronologia, 2020, 61, 125702.	2.2	7
42	Climate–growth relationship for different directions of Pinus pumila radial growth at the treeline of northern Daxing'an Mountains, China. Trees - Structure and Function, 2018, 32, 311-322.	1.9	6
43	Evaluation of Tree Growth Relevant Atmospheric Circulation Patterns for Geopotential Height Field Reconstructions for Asia. Journal of Climate, 2018, 31, 4391-4401.	3.2	5
44	Tree-Ring Isotopes Provide Clues for Sink Limitation on Treeline Formation on the Tibetan Plateau. Atmosphere, 2021, 12, 540.	2.3	5
45	A 406-year non-growing-season precipitation reconstruction in the southeastern Tibetan Plateau. Climate of the Past, 2021, 17, 2381-2392.	3.4	5
46	A comparison among root soil-conservation effects for nine herbs at the cold region highway in north-eastern China. Eurasian Soil Science, 2014, 47, 1274-1282.	1.6	4
47	Comparative analysis of annual rings of perennial forbs in the Loess Plateau, China. Dendrochronologia, 2016, 38, 82-89.	2.2	4
48	Wavelet methods reveal big cat activity patterns and synchrony of activity with preys. Integrative Zoology, 2021, , .	2.6	4
49	Summer mean temperature reconstruction during the past 285 years based on tree-ring in northern Gaoligong Mountains, northwestern Yunnan of China. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 69-82.	1.5	3
50	Climatic controls of Pinus pumila radial growth along an altitude gradient. New Forests, 0, , 1.	1.7	3
51	Xylem features detrending methods matter: A case study on earlywood vessels of Fraxinus mandshurica. Ecological Indicators, 2021, 130, 108041.	6.3	3
52	Multi-species approach strengthens the reliability of dendroclimatic reconstructions in monsoonal Northeast China. Climatic Change, 2022, 171, 1.	3.6	3
53	Moisture history in the Northeast China since 1750s reconstructed from tree-ring cellulose oxygen isotope. Quaternary International, 2022, 625, 49-59.	1.5	3
54	Reconstruction of maximum temperature on Zhegu Mountain, western Sichuan Plateau (China). Climate Research, 2020, 81, 1-14.	1.1	2

#	Article	IF	CITATIONS
55	Radial Growth of Trees Rather Than Shrubs in Boreal Forests Is Inhibited by Drought. Frontiers in Plant Science, 2022, 13, .	3.6	1
56	A Comparative Analysis of the Hydraulic Strategies of Non-Native and Native Perennial Forbs in Arid and Semiarid Areas of China. Forests, 2022, 13, 193.	2.1	0