
Theda Daniels-Race

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652958/publications.pdf

Version: 2024-02-01

THEDA DANIELS-RACE

#	Article	IF	CITATIONS
1	High-density InAs nanowires realized in situ on (100) InP. Applied Physics Letters, 1999, 75, 1173-1175.	1.5	82
2	Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Nanomaterials, 2013, 3, 272-288.	1.9	64
3	Effects of the matrix on self-organization of InAs quantum nanostructures grown on InP substrates. Applied Physics Letters, 2002, 80, 1367-1369.	1.5	55
4	Influence of indium composition on the surface morphology of self-organized InxGa1â^'xAs quantum dots on GaAs substrates. Journal of Applied Physics, 2000, 87, 188-191.	1.1	24
5	Self-organization of wire-like InAs nanostructures on InP. Journal of Crystal Growth, 1999, 205, 613-617.	0.7	23
6	Structural and optical characterization of InAs nanostructures grown on high-index InP substrates. Journal of Crystal Growth, 1999, 200, 321-325.	0.7	18
7	Surface enhanced Raman spectroscopy on silver-nanoparticle-coated carbon-nanotube networks fabricated by electrophoretic deposition. Electronic Materials Letters, 2014, 10, 325-335.	1.0	14
8	Growth mode and strain relaxation of InAs on InP (111)A grown by molecular beam epitaxy. Applied Physics Letters, 1999, 74, 1388-1390.	1.5	13
9	A Review of Atomic Scale Characterization Techniques of Molybdenum Disulfide (MoS2). Journal of Electronic Materials, 2019, 48, 3451-3458.	1.0	13
10	Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS. Electronic Materials Letters, 2014, 10, 879-885.	1.0	11
11	Study of electrospray assisted electrophoretic deposition of carbon nanotubes on insulator substrates. Electronic Materials Letters, 2015, 11, 949-956.	1.0	10
12	Photoluminescence properties of dense InAs/AlInAs quantum wire arrays. Journal of Crystal Growth, 2000, 216, 527-531.	0.7	9
13	Clinical probe utilizing surface enhanced Raman scattering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 06FD02.	0.6	8
14	Surface Wettability Drives the Crystalline Surface Assembly of Monodisperse Spheres in Evaporative Colloidal Lithography. Journal of Physical Chemistry C, 2022, 126, 505-516.	1.5	8
15	Time-Tested Survival Skills for a Publish or Perish Environment. Journal of Engineering Education, 2002, 91, 133-137.	1.9	7
16	Surface enhanced Raman spectroscopic substrate utilizing gold nanoparticles on carbon nanotubes. Journal of Applied Physics, 2017, 122, .	1.1	7
17	Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates. Journal of Electronic Materials, 2018, 47, 4604-4609.	1.0	6
18	Electro-optical characterization of nanoGUMBOS. Electronic Materials Letters, 2014, 10, 775-781.	1.0	5

THEDA DANIELS-RACE

#	Article	IF	CITATIONS
19	Fabrication of Zinc Oxide Nanoparticles Deposited on (3-Aminopropyl) Triethoxysilane-Treated Silicon Substrates by an Optimized Voltage-Controlled Electrophoretic Deposition and Their Application as Fluorescence-Based Sensors. Chemosensors, 2021, 9, 5.	1.8	5
20	A needle probe to detect surface enhanced Raman scattering (SERS) within solid specimen. Review of Scientific Instruments, 2017, 88, 023107.	0.6	4
21	Nanorough gold for enhanced Raman scattering. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 06FE02.	0.6	3
22	Voltage-Controlled Deposition of Dispersed Carbon Nanotubes onto a Conducting Substrate Without a Catalyst. Advanced Science, Engineering and Medicine, 2018, 10, 564-567.	0.3	3
23	Single fiber surface enhanced Raman scattering probe. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 06GF01.	0.6	2
24	Engineering the I-V characteristics of an asymmetric double barrier device with variable period GaAs/AlAs superlattice injectors. Thin Solid Films, 1997, 300, 202-207.	0.8	1
25	Characterization of AOT capped cadmium sulfide quantum dots using fluorescence spectroscopy. Microwave and Optical Technology Letters, 2010, 52, 912-913.	0.9	1
26	Fluorescence spectroscopy characterization of cadmium sulfide quantum dots on metal, insulator, and semiconductor substrates. Microwave and Optical Technology Letters, 2011, 53, 1018-1021.	0.9	1
27	A Brief Review of the Chemical Structure and Raman Spectrum of Mono- and Multilayer Molybdenum- and Tungsten-Based Transition Metal Dichalcogenides. Journal of Electronic Materials, 2022, 51, 4808-4815.	1.0	1
28	Photoluminescence study of highly doped, tensile-strained GaAs/In0.07Al0.93As quantum wells. Microwave and Optical Technology Letters, 1997, 16, 7-11.	0.9	0
29	Structural calibration of tensile-strained GaAs/InAlAs quantum wells. Microwave and Optical Technology Letters, 2001, 28, 143-147.	0.9	0
30	Raman spectroscopic characterization of acid refluxed and surfactantâ€assisted dispersed multiwalled carbon nanotubes on surface functionalized substrates. Microwave and Optical Technology Letters, 2020, 62, 3829-3835.	0.9	0
31	Dispersed Molybdenum Disulfide Deposition onto a Conducting Substrate Using a Voltage Controlled Deposition Technique. Advanced Science, Engineering and Medicine, 2018, 10, 1224-1226.	0.3	0
32	Fluorescence spectroscopy characterization of electrophoretically deposited ZnO nanoparticles on		0

aluminum, silicon, and APTES functionalized silicon substrates. , 2022, , .