Mehdi Salami-Kalajahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652884/publications.pdf

Version: 2024-02-01

210 papers

6,142 citations

44 h-index

57758

59 g-index

211 all docs

211 docs citations

times ranked

211

3611 citing authors

#	Article	IF	CITATIONS
1	Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano, 2020, 14, 14417-14492.	14.6	314
2	The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polymer Chemistry, 2019, 10, 5686-5720.	3.9	141
3	A structural study on ethylenediamine- and poly(amidoamine)-functionalized graphene oxide: simultaneous reduction, functionalization, and formation of 3D structure. RSC Advances, 2015, 5, 71835-71843.	3.6	111
4	In Situ Controlled Radical Polymerization: AÂReview on Synthesis of Well-defined Nanocomposites. Polymer Reviews, 2012, 52, 142-188.	10.9	106
5	Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies. Corrosion Science, 2017, 127, 186-200.	6.6	89
6	Multilayer fluorescent magnetic nanoparticles with dual thermoresponsive and pH-sensitive polymeric nanolayers as anti-cancer drug carriers. RSC Advances, 2015, 5, 29653-29662.	3.6	83
7	Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. Materials Science and Engineering C, 2020, 109, 110524.	7.3	77
8	Light- and temperature-responsive micellar carriers prepared by spiropyran-initiated atom transfer polymerization: Investigation of photochromism kinetics, responsivities, and controlled release of doxorubicin. Polymer, 2020, 187, 122046.	3.8	72
9	Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: Doxorubicin loading and release behavior. Polymer, 2017, 117, 287-294.	3.8	68
10	Synthesis of poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide nanosheets via reversible addition–fragmentation chain transfer polymerization. RSC Advances, 2014, 4, 16743.	3.6	67
11	Functionalization of carbon nanotubes by combination of controlled radical polymerization and "grafting to―method. Advances in Colloid and Interface Science, 2020, 278, 102126.	14.7	67
12	Polystyrene-grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Advances, 2014, 4, 24439-24452.	3.6	66
13	Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: High carbon yields by resin modification and its incorporation into aerogel network. Polymer Degradation and Stability, 2016, 124, 1-14.	5.8	66
14	Grafting of pH-sensitive poly (N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto HNTS <i>via</i> surface-initiated atom transfer radical polymerization for controllable drug release. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 123-131.	3.4	65
15	Preparation of organic-inorganic hybrid nanocomposites from chemically modified epoxy and novolac resins and silica-attached carbon nanotubes by sol-gel process: Investigation of thermal degradation and stability. Progress in Organic Coatings, 2018, 117, 154-165.	3.9	64
16	Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose, 2017, 24, 2241-2254.	4.9	62
17	Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions. Polymer, 2019, 182, 121830.	3.8	61
18	Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system. Polymer, 2018, 143, 245-257.	3.8	60

#	Article	IF	Citations
19	Hybrid and hollow Poly(N,N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer, 2019, 180, 121716.	3.8	58
20	A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 56-62.	4.7	57
21	Temperature-Responsive Poly(<i>N</i> -Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. Langmuir, 2020, 36, 2683-2694.	3. 5	56
22	Polymer grafting on graphene layers by controlled radical polymerization. Advances in Colloid and Interface Science, 2019, 273, 102021.	14.7	54
23	Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2017, 155, 257-265.	5.0	52
24	Synthesis of poly(2-hydroxyethyl methacrylate)-grafted poly(aminoamide) dendrimers as polymeric nanostructures. Colloid and Polymer Science, 2015, 293, 1553-1559.	2.1	51
25	Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density. Colloid and Polymer Science, 2016, 294, 1055-1064.	2.1	51
26	N,N'â€methylenebis(acrylamide)â€crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acidâ€labile hydrazone linkage. Journal of Biomedical Materials Research - Part A, 2018, 106, 342-348.	4.0	51
27	In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. Journal of Polymer Research, 2014, 21, 1.	2.4	50
28	Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide. Colloid and Polymer Science, 2014, 292, 2599-2610.	2.1	50
29	Synthesis of Dual Thermosensitive and pH-Sensitive Hollow Nanospheres Based on Poly(acrylic) Tj ETQq1 1 0.7845 Radical Process. Industrial & Engineering Chemistry Research, 2014, 53, 8079-8086.	314 rgBT / 3.7	
30	Edgeâ€functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polymer International, 2014, 63, 1912-1923.	3.1	50
31	Organic–inorganic nanohybrids of novolac phenolic resin and carbon nanotube: High carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Microporous and Mesoporous Materials, 2016, 224, 58-67.	4.4	50
32	Preparation of tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via atom transfer radical polymerization. AICHE Journal, 2011, 57, 1873-1881.	3.6	49
33	Matrixâ€grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: A kinetic study. International Journal of Chemical Kinetics, 2012, 44, 555-569.	1.6	49
34	Synthesis of dual thermoresponsive and pH-sensitive hollow nanospheres by atom transfer radical polymerization. Journal of Polymer Research, 2014, 21, 1.	2.4	49
35	Synthesis of dual temperature – and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids and Surfaces B: Biointerfaces, 2018, 165, 1-8.	5.0	49
36	Grafting of poly(acrylic acid) onto poly(amidoamine)-functionalized graphene oxide via surface-mediated reversible addition-fragmentation chain transfer polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 302-309.	3.4	48

#	Article	IF	CITATIONS
37	Properties of PMMA/Carbon nanotubes nanocomposites prepared by â€ægrafting through―method. Polymer Composites, 2012, 33, 215-224.	4.6	47
38	Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydrate Polymers, 2019, 225, 115247.	10.2	47
39	Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polymer Composites, 2010, 31, 1829-1837.	4.6	46
40	Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: A study on the kinetics of DOX release. Colloids and Surfaces B: Biointerfaces, 2018, 170, 578-587.	5.0	46
41	A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. Journal of Polymer Research, 2012, 19, 1.	2.4	45
42	Corrosion behavior of aluminum/silica/polystyrene nanostructured hybrid flakes. Iranian Polymer Journal (English Edition), 2014, 23, 699-706.	2.4	45
43	A "Grafting to―Approach to Synthesize Low Cytotoxic Poly(aminoamide)â€Dendrimerâ€grafted Fe ₃ O ₄ Magnetic Nanoparticles. Advances in Polymer Technology, 2018, 37, 943-948.	1.7	45
44	Effect of surface chemistry and content of nanocrystalline cellulose on removal of methylene blue from wastewater by poly(acrylic acid)/nanocrystalline cellulose nanocomposite hydrogels. Cellulose, 2019, 26, 5603-5619.	4.9	45
45	In Situ Reversible Addition–Fragmentation Chain Transfer Polymerization of Styrene in the Presence of MCMâ€41 Nanoparticles: Comparing "Grafting from―and "Grafting through―Approaches. Advances Polymer Technology, 2013, 32, .	in ı .7	44
46	"Grafting through―approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. Journal of Sol-Gel Science and Technology, 2013, 66, 337-344.	2.4	43
47	Molecular Recognition Ability of Molecularly Imprinted Polymer Nano- and Micro-Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization. Polymer Reviews, 2016, 56, 557-583.	10.9	43
48	Synthesis and investigation of dual pH―and temperatureâ€responsive behaviour of poly[2â€(dimethylamino)ethyl methacrylate]â€grafted gold nanoparticles. Applied Organometallic Chemistry, 2017, 31, e3702.	3.5	43
49	Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydrate Polymers, 2020, 245, 116507.	10.2	43
50	Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. Journal of Applied Polymer Science, 2017, 134, .	2.6	42
51	Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly(2-(dimethylamino)ethyl methacrylate). International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 455-461.	3.4	42
52	Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid and Polymer Science, 2017, 295, 25-36.	2.1	41
53	A review on synthesis, photophysical properties, and applications of dendrimers with perylene core. European Polymer Journal, 2020, 137, 109933.	5.4	41
54	Preparation of nanoclayâ€dispersed polystyrene nanofibers via atom transfer radical polymerization and electrospinning. Journal of Applied Polymer Science, 2011, 120, 1431-1438.	2.6	40

#	Article	IF	CITATIONS
55	Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: Heterogeneities in chains and graft densities. Polymer Engineering and Science, 2015, 55, 1720-1732.	3.1	40
56	Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid and Polymer Science, 2015, 293, 3623-3631.	2.1	40
57	Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iranian Polymer Journal (English Edition), 2015, 24, 51-62.	2.4	40
58	Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. Journal of Colloid and Interface Science, 2020, 580, 192-210.	9.4	40
59	Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chemical Engineering Journal, 2011, 174, 368-375.	12.7	39
60	Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. Journal of Polymer Research, 2012, 19 , 1 .	2.4	39
61	Evaluation of the confinement effect of nanoclay on the kinetics of styrene atom transfer radical polymerization. Journal of Applied Polymer Science, 2012, 123, 409-417.	2.6	39
62	Synthesis of clayâ€dispersed poly(styreneâ€≺i>coàêmethyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 2012, 124, 2278-2286.	2.6	39
63	Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: Bioconjugation with folic acid and doxorubicin release kinetics. Applied Organometallic Chemistry, 2017, 31, e3789.	3.5	39
64	Grafting of silica nanoparticles at the surface of graphene for application in novolac-type phenolic resin hybrid composites. Materials Chemistry and Physics, 2018, 216, 468-475.	4.0	39
65	Effect of MCM-41 nanoparticles on the kinetics of free radical and RAFT polymerization of styrene. Iranian Polymer Journal (English Edition), 2013, 22, 155-163.	2.4	38
66	Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. Journal of Sol-Gel Science and Technology, 2016, 80, 362-377.	2.4	38
67	Investigation of corrosion behavior of aluminum flakes coated by polymeric nanolayer: Effect of polymer type. Corrosion Science, 2014, 87, 392-396.	6.6	37
68	Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids and Surfaces B: Biointerfaces, 2018, 170, 85-91.	5.0	37
69	Encapsulation of organomodified montmorillonite with PMMA via in situ SR&NI ATRP in miniemulsion. Journal of Polymer Research, 2012, 19, 1.	2.4	36
70	Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. Journal of Materials Science, 2016, 51, 9057-9073.	3.7	36
71	Effect of grafting ratio of poly(propylene imine) dendrimer onto gold nanoparticles on the properties of colloidal hybrids, their DOX loading and release behavior and cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2019, 178, 500-507.	5.0	36
72	Thermophysical behaviour of matrix-grafted graphene/poly(ethylene tetrasulphide) nanocomposites. RSC Advances, 2015, 5, 100369-100377.	3.6	35

#	Article	IF	Citations
7 3	Fabricating cauliflower-like and dumbbell-like Janus particles: Loading and simultaneous release of DOX and ibuprofen. Colloids and Surfaces B: Biointerfaces, 2019, 173, 155-163.	5.0	35
74	A review on synthesis and applications of dendrimers. Journal of the Iranian Chemical Society, 2021, 18, 503-517.	2.2	35
7 5	Synthesis and characterization of poly(styreneâ€ <i>co</i> â€butyl acrylate)/clay nanocomposite latexes in miniemulsion by AGET ATRP. Polymer Composites, 2011, 32, 967-975.	4.6	34
76	Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. Journal of the Iranian Chemical Society, 2012, 9, 877-887.	2.2	34
77	Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. Journal of Polymer Research, 2012, 19, 1.	2.4	34
78	Synthesis and characterization of exfoliated poly(styreneâ€ <i>co</i> â€methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: an activators generated by electron transfer approach. Polymer Composites, 2011, 32, 1979-1987.	4.6	33
79	Perylene-3,4,9,10-tetracarboxylic diimide and its derivatives: Synthesis, properties and bioapplications. Dyes and Pigments, 2020, 180, 108488.	3.7	32
80	A comprehensive Monte Carlo simulation of styrene atom transfer radical polymerization. Chinese Journal of Polymer Science (English Edition), 2010, 28, 483-497.	3.8	31
81	Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. Journal of Molecular Liquids, 2020, 319, 114138.	4.9	31
82	Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids and Surfaces B: Biointerfaces, 2018, 166, 144-151.	5.0	30
83	Effect of surface modification with various thiol compounds on colloidal stability of gold nanoparticles. Applied Organometallic Chemistry, 2018, 32, e4079.	3.5	29
84	Investigating Janus morphology development of poly(acrylic acid)/poly(2‑(dimethylamino)ethyl) Tj ETQq0 0 0 r Microchemical Journal, 2019, 145, 492-500.	rgBT /Over 4.5	lock 10 Tf 50 29
85	Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers. Journal of Colloid and Interface Science, 2021, 593, 67-78.	9.4	29
86	Nanoclayâ€encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polymer Composites, 2012, 33, 990-998.	4.6	28
87	Evaluation of <i>in vitro</i> cytotoxicity and properties of polydimethylsiloxaneâ€based polyurethane/crystalline nanocellulose bionanocomposites. Journal of Biomedical Materials Research - Part A, 2019, 107, 1771-1778.	4.0	28
88	Preparation of carbon nanotube and polyurethaneâ€imide hybrid composites by sol–gel reaction. Polymer Composites, 2019, 40, E1903-E1909.	4.6	28
89	Study of kinetics and properties of polystyrene/silica nanocomposites prepared via in situ free radical and reversible addition-fragmentation chain transfer polymerizations. Scientia Iranica, 2012, 19, 2004-2011.	0.4	27
90	Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1027-1037.	3.6	27

#	Article	IF	CITATIONS
91	Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-Polymers, 2019, 19, 203-214.	3.0	27
92	Dual-mode security anticounterfeiting and encoding by electrospinning of highly photoluminescent spiropyran nanofibers. Journal of Materials Chemistry C, 2021, 9, 9571-9583.	5.5	27
93	Nanoconfinement effect of graphene on thermophysical properties and crystallinity of matrix-grafted graphene/crosslinked polysulfide polymer nanocomposites. Diamond and Related Materials, 2018, 83, 177-183.	3.9	26
94	Morphology evolution of functionalized styrene and methyl methacrylate copolymer latex nanoparticles by one-step emulsifier-free emulsion polymerization. European Polymer Journal, 2020, 133, 109790.	5.4	26
95	Amine-modified graphene oxide as co-curing agent of epoxidized polysulfide prepolymer: Thermophysical and mechanical properties of nanocomposites. Diamond and Related Materials, 2018, 86, 109-116.	3.9	25
96	Fabrication of microphase-separated polyurethane/cellulose nanocrystal nanocomposites with irregular mechanical and shape memory properties. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	25
97	Polysulfide Polymers: Synthesis, Blending, Nanocomposites, and Applications. Polymer Reviews, 2019, 59, 124-148.	10.9	25
98	Poly(propylene imine) dendrimer as reducing agent for chloroauric acid to fabricate and stabilize gold nanoparticles. Journal of Physics and Chemistry of Solids, 2021, 148, 109682.	4.0	25
99	UV-stabilized self-assembled amphiphilic triblock terpolymers supramolecular structures with low cytotoxicity as doxorubicin carriers. Materials Science and Engineering C, 2020, 110, 110745.	7.3	24
100	Modification of cellulose nanocrystal with dual temperature- and CO2-responsive block copolymers for ion adsorption applications. Journal of Molecular Liquids, 2020, 310, 113234.	4.9	24
101	Synthesis of pHâ€responsive magnetic yolk–shell nanoparticles: A comparison between conventional etching and new deswelling approaches. Applied Organometallic Chemistry, 2018, 32, e4272.	3.5	23
102	Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgB1 2020, 27, 28091-28103.	Overlock	23 10 Tf 50 30
103	Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. European Polymer Journal, 2020, 134, 109804.	5.4	23
104	Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Advances in Colloid and Interface Science, 2021, 294, 102471.	14.7	23
105	A kinetics study on the⟨i⟩in situ⟨ i⟩reversible addition–fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Designed Monomers and Polymers, 2014, 17, 245-254.	1.6	22
106	Temperature-induced self-assembly of amphiphilic triblock terpolymers to low cytotoxic spherical and cubic structures as curcumin carriers. Journal of Molecular Liquids, 2020, 313, 113504.	4.9	22
107	Investigation of thermophysical and adhesion/mechanical properties of amine-cured epoxidized polysulfide polymer/epoxidized graphene nanocomposites. Progress in Organic Coatings, 2019, 131, 211-218.	3.9	21
108	Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal of Polymer Research, 2020, 27, 1.	2.4	21

#	Article	IF	CITATIONS
109	Mechanical behavior of 3D GFRP composite with pure and treated shear thickening fluid matrix subject to quasi-static puncture and shear impact loading. Journal of Composite Materials, 2020, 54, 3933-3948.	2.4	21
110	Synthesis of ethylene dichloride-based polysulfide polymers: investigation of polymerization yield and effect of sulfur content on solubility and flexibility. Journal of Sulfur Chemistry, 2021, 42, 67-82.	2.0	21
111	Effect of Loading and Surface Modification of Nanoparticles on the Properties of PMMA/Silica Nanocomposites Prepared via In-Situ Free Radical Polymerization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 336-344.	3.4	20
112	Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chimica Acta, 2018, 476, 83-92.	2.4	20
113	Controlled release of anti-cancer drug from the shell and hollow cavities of poly(N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation chain transfer polymerization. European Polymer Journal, 2020, 135, 109877.	5.4	20
114	Cellulose nanocrystal-grafted multi-responsive copolymers containing cleavable o-nitrobenzyl ester units for stimuli-stabilization of oil-in-water droplets. Chemical Engineering Journal, 2021, 417, 128005.	12.7	20
115	Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion. Journal of Dispersion Science and Technology, 2017, 38, 985-991.	2.4	19
116	Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. Polymer, 2020, 205, 122859.	3.8	19
117	Carbon dioxide-switched removal of nitrate ions from water by cellulose nanocrystal-grafted and free multi-responsive block copolymers. Journal of Molecular Liquids, 2020, 318, 114301.	4.9	19
118	Poly(poly[ethylene glycol] methyl ether methacrylate)/graphene oxide nanocomposite gel polymer electrolytes prepared by controlled and conventional radical polymerizations for lithium ion batteries. International Journal of Energy Research, 2022, 46, 9114-9127.	4.5	19
119	Application of Monte Carlo simulation method to polymerization kinetics over Ziegler–Natta catalysts. International Journal of Chemical Kinetics, 2009, 41, 45-56.	1.6	18
120	Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. Journal of Polymer Engineering, 2012, 32, .	1.4	18
121	EFFECT OF CARBON NANOTUBES ON THE KINETICS OF <i>IN SITU</i> POLYMERIZATION OF METHYL METHACRYLATE. Nano, 2012, 07, 1250003.	1.0	18
122	Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol–gel method. Journal of Thermal Analysis and Calorimetry, 2018, 132, 513-524.	3.6	18
123	Preparation of photolabile nanoparticles by coumarin-based crosslinker for drug delivery under light irradiation. Journal of Physics and Chemistry of Solids, 2021, 154, 110102.	4.0	18
124	Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene. Journal of Polymer Research, 2013, 20, 1.	2.4	17
125	Halogenated sunflower oil as a precursor for synthesis of polysulfide polymer. E-Polymers, 2016, 16, 33-39.	3.0	17
126	Effect of surface chemistry of graphene and its content on the properties of ethylene dichloride†and disodium tetrasulfide†based polysulfide polymer nanocomposites. Polymer Composites, 2017, 38, E515.	4.6	17

#	Article	IF	CITATIONS
127	Preparation of Furfuryl Alcoholâ€Functionalized Carbon Nanotube and Epoxidized Novolac Resin Composites with High Char Yield. Polymer Composites, 2018, 39, E1231.	4.6	17
128	Preparation of hybrid composites based on epoxy, novolac, and epoxidized novolac resins and silica nanoparticles with high char residue by solâ€gel method. Polymer Composites, 2018, 39, E2316.	4.6	17
129	"Grafting to―approach for surface modification of AuNPs with RAFT-mediated synthesized smart polymers: Stimuli-responsive behaviors of hybrid nanoparticles. Journal of Physics and Chemistry of Solids, 2018, 123, 183-190.	4.0	17
130	Study on crystalline structure of poly(vinylidene fluoride)/polyethylene/graphene blendâ€nanocomposites. Polymer Composites, 2019, 40, 4402-4415.	4.6	17
131	Incorporation of silica nanoparticles and polyurethane into hybrid composites for increase of char residue. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3311-3319.	3.6	17
132	Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydrate Polymers, 2022, 294, 119768.	10.2	17
133	A simulation of kinetics and chain length distribution of styrene FRP and ATRP: Chainâ€lengthâ€dependent termination. Advances in Polymer Technology, 2011, 30, 257-268.	1.7	16
134	Synthesis of well-defined clay encapsulated poly(styrene-co-butyl acrylate) nanocomposite latexes via reverse atom transfer radical polymerization in miniemulsion. Journal of Polymer Engineering, 2012, 32, .	1.4	16
135	Effect of Nanoclay on Styrene and Butyl Acrylate AGET ATRP in Miniemulsion: Study of Nucleation Type, Kinetics, and Polymerization Control. International Journal of Chemical Kinetics, 2013, 45, 221-235.	1.6	16
136	Preparation of epoxidized novolac resin nanocomposites: Physical and chemical incorporation of modified graphene oxide layers for improvement of thermal stability. Polymer Testing, 2018, 68, 467-474.	4.8	16
137	Chemical incorporation of epoxy-modified graphene oxide into epoxy/novolac matrix for the improvement of thermal characteristics. Carbon Letters, 2020, 30, 13-22.	5.9	16
138	A comparative study on solubility improvement of tetracycline and dexamethasone by poly(propylene) Tj ETQq0 0 Biomedical Materials Research - Part A, 2020, 108, 485-495.	0 rgBT /0 4.0	verlock 10 T 16
139	Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 Microchemical Journal, 2020, 157, 105112.	rgBT /Ove 4.5	rlock 10 Tf 5 16
140	Effect of Aliphatic and Aromatic Chain Extenders on Thermal Stability of Graphene Oxide/Polyurethane Hybrid Composites Prepared by Solâ€Gel Method. ChemistrySelect, 2020, 5, 962-967.	1.5	16
141	Synthesis and characterization of poly(methyl methacrylate)/grapheneâ€based thermally expandable microcapsules. Polymer Composites, 2018, 39, 950-960.	4.6	15
142	A pH-controlled approach to fabricate electrolyte/non-electrolyte janus particles with low cytotoxicity as carriers of DOX. Materials Chemistry and Physics, 2020, 249, 123000.	4.0	15
143	Synthesis, characterization, curing, thermophysical and mechanical properties of ethylene dichloride-based polysulfide polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 344-352.	2.2	15
144	Magnetic halloysiteâ€ <scp>based molecularly</scp> imprinted polymer for specific recognition of sunset yellow in dyes mixture. Polymers for Advanced Technologies, 2021, 32, 803-814.	3.2	15

#	Article	IF	CITATIONS
145	Study the effects of PEG modification methods on the resistance of 3D E-glass woven-STF composites at quasi-static and low-velocity impact loads. Journal of Molecular Liquids, 2022, 362, 119781.	4.9	15
146	Preparation of polyurethane-acrylate and silica nanoparticle hybrid composites by a free radical network formation method. Bulletin of Materials Science, 2019, 42, 1.	1.7	14
147	Coumarin-Containing Block Copolymers as Carbon Dioxide Chemosensors Based on a Fluorescence Quenching Mechanism. ACS Applied Polymer Materials, 2022, 4, 1816-1825.	4.4	14
148	Semi-interpenetrated polymer networks based on modified cellulose and starch as gel polymer electrolytes for high performance lithium ion batteries. Cellulose, 2022, 29, 3423-3437.	4.9	14
149	Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers. Journal of Dispersion Science and Technology, 2018, 39, 1730-1741.	2.4	13
150	Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles. Journal of Polymer Research, 2021, 28, 1.	2.4	13
151	In Situ Dendrimer-Crosslinked Gel Polymer Electrolytes for Lithium-Ion Batteries with High Ionic Conductivity and Excellent Electrochemical Performance. ACS Applied Polymer Materials, 2022, 4, 4154-4165.	4.4	13
152	Well-defined nanofiberous polystyrene nanocomposites with twofold chains by ATRP. Polymer Science - Series B, 2012, 54, 153-160.	0.8	12
153	Novel polycarbonate membrane embedded with multi-walled carbon nanotube for water treatment: a comparative study between bovine serum albumin and humic acid removal. Polymer Bulletin, 2022, 79, 1467-1484.	3.3	12
154	Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent. Solid State Communications, 2021, 334-335, 114364.	1.9	12
155	Synthesis, photocrosslinking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. European Polymer Journal, 2021, 158, 110686.	5.4	12
156	Development of highly sensitive metal-ion chemosensor and key-lock anticounterfeiting technology based on oxazolidine. Scientific Reports, 2022, 12, 1079.	3.3	12
157	Poly(poly(ethylene glycol) methyl ether methacrylate-co-acrylonitrile) gel polymer electrolytes for high performance lithium ion batteries: Comparing controlled and conventional radical polymerization. European Polymer Journal, 2022, 173, 111276.	5.4	12
158	Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization. Journal of Polymer Engineering, 2012, 32, 235-243.	1.4	11
159	Radical coupling of maleic anhydride onto graphite to fabricate oxidized graphene nanolayers. Bulletin of Materials Science, 2016, 39, 229-234.	1.7	11
160	Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	11
161	Preparation of intelligent magnetic halloysite nanotubes/polyurethane nanocomposites: The role of nanotube modification on the shape recovery rate. Materials Research Bulletin, 2022, 147, 111653.	5.2	11
162	Simulation of styrene free radical polymerization over bi-functional initiators using Monte Carlo simulation method and comparison with mono-functional initiators. Polymer Science - Series B, 2010, 52, 184-192.	0.8	10

#	Article	IF	CITATIONS
163	An exhaustive study of chain-length-dependent and diffusion-controlled free radical and atom-transfer radical polymerization of styrene. Journal of Polymer Research, 2011, 18, 1539-1555.	2.4	10
164	Encapsulation of aluminum flakes with hybrid silica/poly(acrylic acid) nanolayers by combination of sol–gel and in situ polymerization methods: a corrosion behavior study. Journal of Sol-Gel Science and Technology, 2014, 69, 513-519.	2.4	10
165	Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111008.	5.0	10
166	Polydimethylsiloxaneâ€based Polyurethane/cellulose Nanocrystal Nanocomposites: From Structural Properties Toward Cytotoxicity. Silicon, 2022, 14, 1695-1703.	3.3	10
167	Photophysical and reflectance properties of perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)/rhodamine 6†G hybrid for application in cold paints. Progress in Organic Coatings, 2021, 157, 106308.	3.9	10
168	Smart block copolymers as fluorescence chemosensors of copper ions with high detection limit. Journal of Molecular Liquids, 2022, 345, 117786.	4.9	10
169	Janus-type dendrimers: synthesis, properties, and applications. Journal of Molecular Liquids, 2022, 347, 118396.	4.9	10
170	Rewritable acidochromic papers based on oxazolidine for anticounterfeiting and photosensing of polarity and pH of aqueous media. Scientific Reports, 2022, 12, .	3.3	10
171	Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery. Journal of Drug Delivery Science and Technology, 2021, 64, 102626.	3.0	9
172	Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. Journal of Molecular Liquids, 2021, 335, 116247.	4.9	9
173	Stimuli-responsive block copolymers as pH chemosensors by fluorescence emission intensification mechanism. European Polymer Journal, 2022, 162, 110928.	5.4	9
174	Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries. European Polymer Journal, 2022, 176, 111419.	5.4	9
175	INVESTIGATING THE EFFECT OF MCM-41 NANOPARTICLES ON THE KINETICS OF ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE. Nano, 2013, 08, 1350018.	1.0	8
176	Hyperbranched Poly(amidoamine)â€Grafted Graphene Oxide as a Multifunctional Curing Agent for Epoxyâ€Terminated Polyurethane Composites. ChemistrySelect, 2021, 6, 2692-2699.	1.5	8
177	Simulation of reversible chain transfer catalyzed polymerization (RTCP): effect of different iodide based catalysts. Journal of Polymer Research, 2012, 19, 1.	2.4	7
178	Incorporation of graphene oxide nanolayers into thermally stable hybrid composites of thermosetting resins by combination of curing and sol–gel reactions. Polymer Bulletin, 2018, 75, 4859-4880.	3.3	7
179	Polybutadiene Rubber/Graphene Nanocomposites Prepared <i>via In Situ</i> Coordination Polymerization Using the Neodymium-Based Ziegler–Natta Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 15202-15213.	3.7	7
180	Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. Journal of Molecular Liquids, 2021, 344, 117766.	4.9	7

#	Article	IF	CITATIONS
181	Synthesis and characterization of bis(oxiranylmethyl)sulfanes as new epoxideâ€terminated polysulfide prepolymers and their use in synthesis of new amineâ€cured polysulfide polymers. Advances in Polymer Technology, 2018, 37, 3325-3334.	1.7	6
182	Polymerization of 1,3-butadiene using neodymium versatate: optimization of NdV3/TEAL/EASC molar ratios via response surface methodology (RSM). Polymer Bulletin, 2020, 77, 5245-5260.	3.3	6
183	Reflectance and photophysical properties of rhodamine 6G/2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid as cold hybrid colorant. Scientific Reports, 2022, 12, 6145.	3.3	6
184	Synthesis and characterization of diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as new reversible addition-fragmentation chain transfer agent for polymerization of ethyl methacrylate. Designed Monomers and Polymers, 2016, 19, 56-66.	1.6	5
185	Fabrication of high thermal stable cured novolac/Cloisite 30B nanocomposites by chemical modification of resin structure. Polymers for Advanced Technologies, 2020, 31, 226-232.	3.2	5
186	Effect of porogenic solvent in synthesis of mesoporous and microporous molecularly imprinted polymer based on magnetic halloysite nanotubes. Materials Today Communications, 2021, 26, 101780.	1.9	5
187	Dendrimer hybrids with other nanoparticles as therapeutics. , 2021, , 253-272.		5
188	Modification of carbon nanotube with poly(amidoamine) dendritic structures to prepare a multifunctional hybrid curing component for epoxidized polyurethane and novolac resins. Journal of Polymer Research, 2021, 28, 1.	2.4	5
189	Application of the Monte Carlo simulation method to the Investigation of the effect of chain-length-dependent bimolecular termination on ATRP. E-Polymers, 2009, 9, .	3.0	4
190	Kinetic study of in situ normal and AGET atom transfer radical copolymerization of ⟨i⟩n⟨li⟩–butyl acrylate and styrene: Effect of nanoclay loading and catalyst concentration. International Journal of Chemical Kinetics, 2012, 44, 789-799.	1.6	4
191	One-step fabrication of low cytotoxic anisotropic poly(2-hydroxyethyl methacrylate-co-methacrylic) Tj ETQq1 1 0.7 101332.	'84314 r 3.0	
192	Synthesis of coreâ€shell and Janus polystyrene@polypyrrole particles by variation of surfactant and monomer amount through seeded emulsion polymerization. Polymers for Advanced Technologies, 2020, 31, 2999-3007.	3.2	4
193	Vapor Phase Modification for Selective Enrichment of Grafted Styrene/Acrylonitrile onto Carbon Nanotubes Via ATRP. Processes, 2021, 9, 459.	2.8	4
194	Poly(amidoamine) dendrimer-grafted carbon nanotubes as a hybrid multifunctional curing agent for epoxy-modified polyurethane. Carbon Letters, 2021, 31, 677.	5. 9	4
195	Fabrication of acidâ€labile poly(2â€hydroxyethyl methacrylate) nanoparticles using aldazineâ€based crosslinker as <scp>pH</scp> â€sensitive drug nanocarriers. Polymers for Advanced Technologies, 2021, 32, 3095-3103.	3.2	4
196	Synthesis of poly(styrene―co â€allylamine)―b â€poly(2â€(dimethylamino)ethyl methacrylate) graft copolymers via "grafting from―atom transfer radical polymerization and their selfâ€assembly in aqueous media. Polymers for Advanced Technologies, 2021, 32, 4135-4141.	3.2	4
197	Preparation of silica-decorated graphite oxide and epoxy-modified phenolic resin composites. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 348-357.	2.1	4
198	Synthesis and properties of fluorescent coumarin/perylene-3,4,9,10-tetracarboxylic diimide hybrid as cold dye. Materials Research Bulletin, 2021, 144, 111500.	5. 2	4

#	Article	IF	CITATIONS
199	Preparation of a hyperbranched hybrid curing agent for epoxidized novolac resin. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 793-802.	2.1	3
200	Hybrid composites of epoxidized polyurethane and novolac resins cured by poly(amidoamine) dendrimer-grafted graphene oxide. Polymer Bulletin, 2022, 79, 5975-5990.	3.3	3
201	Fabrication, optimization and characterization of preformed-particle-gel containing nanogel particles for conformance control in oil reservoirs. Polymer Bulletin, 2022, 79, 7137-7159.	3.3	3
202	Investigation of Ethylene Polymerization Kinetics over Ziegler-Natta Catalysts: Employing Moment Equation Modeling to Study the Effect of Different Active Centers on Homopolymerization Kinetics. E-Polymers, 2008, 8, .	3.0	2
203	Applicability of EIS for evaluation of corrosion resistance of aluminum flakes. Anti-Corrosion Methods and Materials, 2016, 63, 355-359.	1.5	2
204	Effect of poly(amidoamine) dendrimer-grafted silica nanoparticles and different chain extenders on thermal properties of epoxy-modified polyurethane composites. Bulletin of Materials Science, 2021, 44, 1.	1.7	2
205	Multifunctional poly(amidoamine)-functionalized silica nanoparticles for epoxide-functionalized polyurethane and novolac resins crosslinking. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	2
206	Core–shell to Janus morphologies from co-assembly of polyaniline and hydrophobic polymers in aqueous media. Polymer Bulletin, 0, , 1.	3.3	2
207	Synthesis, optical properties, and cell imaging performance of perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)-based poly(amidoamine) (PAMAM) dendrimers. European Polymer Journal, 2022, 170, 111159.	5.4	2
208	One-pot synthesis of organo-silica hybrids with high thermal properties via a simple sol–gel process. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2267-2274.	3.6	1
209	QUANTITATIVE EVALUATION OF ARRANGEMENT OF MONOMERS IN LINEAR BINARY COPOLYMERS USING A MONTE CARLO SIMULATION METHOD. Chinese Journal of Polymer Science (English Edition), 2009, 27, 195.	3.8	1
210	Application of butane-1,4-diyl bis(2-mercaptoacetate) as dithiol prepolymer for preparation of polythiourethane and clay-based nanocomposites. Journal of Sulfur Chemistry, 2022, 43, 402-412.	2.0	1