List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66526/publications.pdf Version: 2024-02-01

VINCTI

#	Article	IF	CITATIONS
1	Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment, 2008, 42, 6247-6260.	4.1	643
2	Source Apportionment of Ambient Volatile Organic Compounds in Beijing. Environmental Science & Technology, 2007, 41, 4348-4353.	10.0	273
3	Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO ₂ and RO ₂ radicals. Atmospheric Chemistry and Physics, 2017, 17, 663-690.	4.9	239
4	Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmospheric Chemistry and Physics, 2015, 15, 8871-8888.	4.9	213
5	Volatile organic compounds measured in summer in Beijing and their role in groundâ€level ozone formation. Journal of Geophysical Research, 2009, 114, .	3.3	190
6	Wintertime photochemistry in Beijing: observations of RO _{<i>x</i>} radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18, 12391-12411.	4.9	177
7	Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmospheric Chemistry and Physics, 2008, 8, 1531-1545.	4.9	174
8	Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmospheric Environment, 2008, 42, 6261-6274.	4.1	171
9	Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environmental Pollution, 2008, 156, 174-183.	7.5	161
10	Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmospheric Chemistry and Physics, 2014, 14, 3047-3062.	4.9	153
11	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Technology, 2019, 53, 10676-10684.	10.0	147
12	Longâ€Term Trends of Anthropogenic <scp>SO₂</scp> , <scp>NO_x</scp> , CO, and NMVOCs Emissions in China. Earth's Future, 2018, 6, 1112-1133.	6.3	139
13	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
14	Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment, 2007, 41, 8380-8390.	4.1	127
15	Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. Atmospheric Environment, 2011, 45, 1817-1829.	4.1	127
16	The formation of nitro-aromatic compounds under high NO _{<i>x</i>} and anthropogenic VOC conditions in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 7649-7665.	4.9	127
17	Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmospheric Environment, 2008, 42, 6000-6010.	4.1	115
18	Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis. Atmospheric Chemistry and Physics, 2012, 12, 8389-8399.	4.9	111

#	Article	IF	CITATIONS
19	Source Identification of Reactive Hydrocarbons and Oxygenated VOCs in the Summertime in Beijing. Environmental Science & Technology, 2009, 43, 75-81.	10.0	92
20	Biomass Burning Contributions to Ambient VOCs Species at a Receptor Site in the Pearl River Delta (PRD), China. Environmental Science & Technology, 2010, 44, 4577-4582.	10.0	92
21	Distributions and Source Apportionment of Ambient Volatile Organic Compounds in Beijing City, China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1843-1860.	1.7	91
22	The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10693-10713.	4.9	84
23	Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons. Atmospheric Environment, 2008, 42, 6233-6246.	4.1	77
24	Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmospheric Research, 2012, 116, 93-104.	4.1	76
25	Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: observation and modeling implications. Atmospheric Chemistry and Physics, 2015, 15, 3045-3062.	4.9	67
26	Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013. Atmospheric Chemistry and Physics, 2015, 15, 1489-1502.	4.9	66
27	OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget. Atmospheric Chemistry and Physics, 2017, 17, 645-661.	4.9	63
28	Measurement of overall uptake coefficients for HO ₂ radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China). Atmospheric Chemistry and Physics, 2012, 12, 11907-11916.	4.9	60
29	Potentially Important Contribution of Gas-Phase Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol during Haze Events in Beijing. Environmental Science & Technology, 2019, 53, 1235-1244.	10.0	54
30	Detailed investigation of ventilation rates and airflow patterns in a northern California residence. Indoor Air, 2018, 28, 572-584.	4.3	50
31	Exploring the drivers of the increased ozone production in Beijing in summertime during 2005–2016. Atmospheric Chemistry and Physics, 2020, 20, 15617-15633.	4.9	48
32	The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China. Science of the Total Environment, 2016, 569-570, 548-556.	8.0	47
33	The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013, 13, 11157-11167.	4.9	39
34	Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. Atmospheric Chemistry and Physics, 2013, 13, 8265-8283.	4.9	39
35	Evaluation of biogenic isoprene emissions and their contribution to ozone formation by ground-based measurements in Beijing, China. Science of the Total Environment, 2018, 627, 1485-1494.	8.0	39
36	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	3.1	33

#	Article	IF	CITATIONS
37	PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006. Atmospheric Chemistry and Physics, 2010, 10, 7085-7099.	4.9	31
38	NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Environment, 2020, 224, 117180.	4.1	28
39	Variability of ozone depleting substances as an indication of emissions in the Pearl River Delta, China. Atmospheric Environment, 2008, 42, 6973-6981.	4.1	27
40	Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer in Beijing, 2004. Frontiers of Environmental Science and Engineering in China, 2007, 1, 147-152.	0.8	26
41	Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments. Environmental Science & Technology, 2021, 55, 4410-4419.	10.0	26
42	Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091351.	4.0	24
43	Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 799, 149491.	8.0	24
44	Atmospheric Processing of Nitrophenols and Nitrocresols From Biomass Burning Emissions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033401.	3.3	23
45	Comprehensive characterization and health assessment of occupational exposures to volatile organic compounds (VOCs) in Xi'an, a major city of northwestern China. Atmospheric Environment, 2021, 246, 118085.	4.1	20
46	Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China: Potential Seasonality of Spatial Distributions. Environmental Science & amp; Technology, 2021, 55, 7276-7286.	10.0	20
47	The Formation of Saturn's and Jupiter's Electron Radiation Belts by Magnetospheric Electric Fields. Astrophysical Journal Letters, 2020, 905, L10.	8.3	20
48	Structure and evolution of electron "zebra stripes―in the inner radiation belt. Journal of Geophysical Research: Space Physics, 2016, 121, 4145-4157.	2.4	19
49	Species-specified VOC emissions derived from a gridded study in the Pearl River Delta, China. Scientific Reports, 2018, 8, 2963.	3.3	19
50	OH and HO ₂ radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Chemistry and Physics, 2022, 22, 7005-7028.	4.9	19
51	Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmospheric Environment, 2020, 224, 117114.	4.1	16
52	Dibasic Esters Observed as Potential Emerging Indoor Air Pollutants in New Apartments in Beijing, China. Environmental Science and Technology Letters, 2021, 8, 445-450.	8.7	14
53	Reactivity of ambient volatile organic compounds (VOCs) in summer of 2004 in Beijing. Chinese Chemical Letters, 2008, 19, 573-576.	9.0	11
54	Observations of glyoxal and methylglyoxal in a suburban area of the Yangtze River Delta, China. Atmospheric Environment, 2020, 238, 117727.	4.1	10

#	Article	IF	CITATIONS
55	Saturn's Inner Magnetospheric Convection in the View of Zebra Stripe Patterns in Energetic Electron Spectra. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029600.	2.4	10
56	Unexpected High Contribution of Residential Biomass Burning to Nonâ€Methane Organic Gases (NMOGs) in the Yangtze River Delta Region of China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
57	Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model. Atmospheric Chemistry and Physics, 2016, 16, 15461-15484.	4.9	7
58	Variation of ambient carbonyl levels in urban Beijing between 2005 and 2012. Atmospheric Environment, 2016, 129, 105-113.	4.1	7
59	Advances on Atmospheric Oxidation Mechanism of Typical Aromatic Hydrocarbons. Acta Chimica Sinica, 2021, 79, 1214.	1.4	6
60	Novel Application of Machine Learning Techniques for Rapid Source Apportionment of Aerosol Mass Spectrometer Datasets. ACS Earth and Space Chemistry, 2022, 6, 932-942.	2.7	6
61	New particle formation and its CCN enhancement in the Yangtze River Delta under the control of continental and marine air masses. Atmospheric Environment, 2021, 254, 118400.	4.1	5
62	Zebra Stripe Patterns in Energetic Ion Spectra at Saturn. Geophysical Research Letters, 2022, 49, .	4.0	5
63	Spatial variability of air pollutants in a megacity characterized by mobile measurements. Atmospheric Chemistry and Physics, 2022, 22, 7389-7404.	4.9	4
64	Field observations and quantifications of atmospheric formaldehyde partitioning in gaseous and particulate phases. Science of the Total Environment, 2021, 808, 152122.	8.0	3