Qianqian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652440/publications.pdf

Version: 2024-02-01

Οιανοιαν Ζηάνο

#	Article	IF	CITATIONS
1	Functionalization of Benzotriazole-Based Conjugated Polymers for Solar Cells: Heteroatom vs Substituents. ACS Applied Polymer Materials, 2021, 3, 30-41.	2.0	14
2	Nanostructured Lateral Boryl Substitution Conjugated Donor–Acceptor Oligomers for Visibleâ€Lightâ€Driven Hydrogen Production. Small, 2021, 17, e2100132.	5.2	23
3	Effect of Cyano Substitution on Conjugated Polymers for Bulk Heterojunction Solar Cells. ACS Applied Polymer Materials, 2019, 1, 3313-3322.	2.0	17
4	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	5.8	28
5	Sequential Deposition of Organic Films with Ecoâ€Compatible Solvents Improves Performance and Enables Over 12%â€Efficiency Nonfullerene Solar Cells. Advanced Materials, 2019, 31, e1808153.	11.1	132
6	Green-Solvent-Processed Conjugated Polymers for Organic Solar Cells: The Impact of Oligoethylene Glycol Side Chains. ACS Applied Polymer Materials, 2019, 1, 804-814.	2.0	39
7	Revealing the Impact of F4â€TCNQ as Additive on Morphology and Performance of Highâ€Efficiency Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806262.	7.8	55
8	Solar Cells: Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent (Adv. Mater. 8/2018). Advanced Materials, 2018, 30, 1870054.	11.1	3
9	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	11.1	172
10	Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light―and Chargeâ€Manipulation Layer. Advanced Materials, 2018, 30, e1706083.	11.1	76
11	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	11.1	150
12	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	11.1	199
13	The finale of a trilogy: comparing terpolymers and ternary blends with structurally similar backbones for use in organic bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 19190-19200.	5.2	13
14	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	11.1	116
15	Shear-Enhanced Transfer Printing of Conducting Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 31560-31567.	4.0	34
16	Design and Synthesis of Conjugated Polymers for Solar Cells. Materials and Energy, 2018, , 1-30.	2.5	0
17	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	6.6	813
18	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44

QIANQIAN ZHANG

#	Article	IF	CITATIONS
19	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
20	Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene. Journal of Physical Chemistry C, 2017, 121, 10305-10316.	1.5	11
21	Panchromatic Sequentially Cast Ternary Polymer Solar Cells. Advanced Materials, 2017, 29, 1604603.	11.1	87
22	Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report. Advanced Materials, 2017, 29, 1601391.	11.1	139
23	Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. Journal of Physical Chemistry C, 2017, 121, 2059-2068.	1.5	22
24	Fluorination of Donor–Acceptor Copolymer Active Layers Enhances Charge Mobilities in Thin-Film Transistors. ACS Macro Letters, 2017, 6, 1162-1167.	2.3	18
25	Donor polymer fluorination doubles the efficiency in non-fullerene organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 22536-22541.	5.2	27
26	The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. Accounts of Chemical Research, 2017, 50, 2401-2409.	7.6	309
27	Enhancing Performance of Nonfullerene Acceptors via Sideâ€Chain Conjugation Strategy. Advanced Materials, 2017, 29, 1702125.	11.1	249
28	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	3.1	21
29	Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–Acceptor Copolymers. Chemistry of Materials, 2017, 29, 5990-6002.	3.2	57
30	Comparative Photovoltaic Study of Physical Blending of Two Donor–Acceptor Polymers with the Chemical Blending of the Respective Moieties. Macromolecules, 2016, 49, 2533-2540.	2.2	31
31	Direct Optical Observation of Stimulated Emission from Hot Charge Transfer Excitons in Bulk Heterojunction Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19697-19702.	1.5	2