
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 2004, 65, 497-503.	1.7	415
2	Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. Journal of Agricultural and Food Chemistry, 2013, 61, 8987-9003.	2.4	328
3	Participation of abscisic acid and gibberellins produced by endophytic <i>Azospirillum</i> in the alleviation of drought effects in maize. Botany, 2009, 87, 455-462.	0.5	302
4	<i>Azospirillum brasilense</i> ameliorates the response of <i>Arabidopsis thaliana</i> to drought mainly via enhancement of <scp>ABA</scp> levels. Physiologia Plantarum, 2015, 153, 79-90.	2.6	280
5	Title is missing!. Plant Growth Regulation, 1998, 24, 7-11.	1.8	271
6	Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation, 2008, 54, 97-103.	1.8	222
7	Bacteria isolated from roots and rhizosphere of <i>Vitis vinifera</i> retard water losses, induce abscisic acid accumulation and synthesis of defenseâ€related terpenes in in vitro cultured grapevine. Physiologia Plantarum, 2014, 151, 359-374.	2.6	200
8	Abscisic acid is involved in the response of grape (<i>Vitis vinifera</i> L.) cv. Malbec leaf tissues to ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell and Environment, 2009, 33, 1-10.	2.8	168
9	Solar UV-B and ABA Are Involved in Phenol Metabolism of Vitis vinifera L. Increasing Biosynthesis of Berry Skin Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 4874-4884.	2.4	164
10	Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry, 2012, 77, 89-98.	1.4	150
11	Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant Journal, 2003, 36, 203-214.	2.8	149
12	Transcriptome changes in grapevine (Vitis viniferaL.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biology, 2010, 10, 224.	1.6	120
13	Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 2015, 178, 172-178.	4.2	116
14	Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Involves Ethylene. Journal of Plant Growth Regulation, 2006, 25, 175-185.	2.8	106
15	Phenolic Composition in Grape (Vitis vinifera L. cv. Malbec) Ripened with Different Solar UV-B Radiation Levels by Capillary Zone Electrophoresis. Journal of Agricultural and Food Chemistry, 2008, 56, 2892-2898.	2.4	99
16	Azospirillum brasilense and Azospirillum lipoferum Hydrolyze Conjugates of GA20 and Metabolize the Resultant Aglycones to GA1 in Seedlings of Rice Dwarf Mutants. Plant Physiology, 2001, 125, 2053-2058.	2.3	85
17	Phototropins But Not Cryptochromes Mediate the Blue Light-Specific Promotion of Stomatal Conductance, While Both Enhance Photosynthesis and Transpiration under Full Sunlight Â. Plant Physiology, 2012, 158, 1475-1484.	2.3	85
18	Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Applied Soil Ecology, 2017, 109, 60-68.	2.1	74

#	Article	IF	CITATIONS
19	Exogenous ABA Increases Yield in Field-Grown Wheat with Moderate Water Restriction. Journal of Plant Growth Regulation, 2010, 29, 366-374.	2.8	73
20	An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regulation, 2011, 64, 207-210.	1.8	73
21	Exogenous Abscisic Acid Increases Carbohydrate Accumulation and Redistribution to the Grains in Wheat Grown Under Field Conditions of Soil Water Restriction. Journal of Plant Growth Regulation, 2007, 26, 285-289.	2.8	71
22	Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry, 2013, 96, 148-157.	1.4	71
23	<scp>UV</scp> â€B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum, 2013, 149, 127-140.	2.6	55
24	Gibberellins and Abscisic Acid Promote Carbon Allocation in Roots and Berries of Grapevines. Journal of Plant Growth Regulation, 2011, 30, 220-228.	2.8	51
25	<scp>ABA</scp> and <scp>GA₃</scp> increase carbon allocation in different organs of grapevine plants by inducing accumulation of nonâ€structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiologia Plantarum, 2016, 156, 323-337.	2.6	51
26	Title is missing!. Plant Growth Regulation, 1997, 23, 179-182.	1.8	49
27	Dormancy in peach (Prunus persica) flower buds. V. Anatomy of bud development in relation to phenological stage. Canadian Journal of Botany, 2002, 80, 656-663.	1.2	49
28	Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec. Phytochemistry, 2015, 110, 46-57.	1.4	48
29	Foliar sprays with ABA promote growth of llex paraguariensis by alleviating diurnal water stress. Plant Growth Regulation, 2004, 42, 105-111.	1.8	46
30	Azospirillum spp. metabolize[17,17-2H2]gibberellin A20 to[17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings. Plant and Cell Physiology, 2001, 42, 763-767.	1.5	44
31	Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry, 2015, 115, 152-160.	1.4	44
32	Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Plant Physiology and Biochemistry, 2016, 109, 84-90.	2.8	44
33	Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiology and Biochemistry, 2016, 106, 295-304.	2.8	42
34	Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina. Food Chemistry, 2018, 265, 120-127.	4.2	42
35	A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in llex paraguariensis leaves in response to water deficit and abscisic acid. Plant Physiology and Biochemistry, 2013, 65, 48-54.	2.8	41
36	High-throughput method based on quick, easy, cheap, effective, rugged and safe followed by liquid chromatography-multi-wavelength detection for the quantification of multiclass polyphenols in wines. Journal of Chromatography A, 2014, 1342, 44-53.	1.8	40

#	Article	IF	CITATIONS
37	Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food and Function, 2016, 7, 1544-1553.	2.1	39
38	Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiology and Biochemistry, 2015, 91, 56-60.	2.8	38
39	Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiology and Biochemistry, 2019, 135, 287-294.	2.8	34
40	Title is missing!. Plant Growth Regulation, 1998, 26, 165-173.	1.8	33
41	Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiology and Biochemistry, 2001, 39, 815-823.	2.8	33
42	Development of a high-performance liquid chromatography method based on a core–shell column approach for the rapid determination of multiclass polyphenols in grape pomaces. Food Chemistry, 2016, 192, 1-8.	4.2	32
43	Abscisic Acid Sprays Significantly Increase Yield per Plant in Vineyard-Grown Wine Grape (Vitis vinifera) Tj ETQq1 Content and Total Polyphenol Index of Both Juice and Wine. Journal of Plant Growth Regulation, 2009, 28, 28-35.	1 0.78431 2.8	4 rgBT /Ove 31
44	Water deficit and exogenous ABA significantly affect grape and wine phenolic composition under in field and in-vitro conditions. Plant Growth Regulation, 2011, 65, 11-21.	1.8	31
45	UV-B and abscisic acid effects on grape berry maturation and quality. Journal of Berry Research, 2013, 3, 1-14.	0.7	26
46	Phenolics profiling of pomace extracts from different grape varieties cultivated in Argentina. RSC Advances, 2017, 7, 29446-29457.	1.7	26
47	Bacteria and smoke-water extract improve growth and induce the synthesis of volatile defense mechanisms in Vitis vinifera L. Plant Physiology and Biochemistry, 2017, 120, 1-9.	2.8	25
48	Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina. Science of the Total Environment, 2018, 615, 1485-1498.	3.9	25
49	Terroir and vintage discrimination of Malbec wines based on phenolic composition across multiple sites in Mendoza, Argentina. Scientific Reports, 2021, 11, 2863.	1.6	25
50	Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science, 2009, 60, 1131.	0.7	24
51	Dormancy in peach (Prunus persica) flower buds. VI. Effects of gibberellins and an acylcyclohexanedione (trinexapac-ethyl) on bud morphogenesis in field experiments with orchard trees and on cuttings. Canadian Journal of Botany, 2002, 80, 664-674.	1.2	23
52	Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. Journal of the Science of Food and Agriculture, 2020, 100, 376-383.	1.7	22
53	High-Altitude Solar UV-B and Abscisic Acid Sprays Increase Grape Berry Antioxidant Capacity. American Journal of Enology and Viticulture, 2015, 66, 65-72.	0.9	21
54	Assessment of in-vitro bioaccessibility and antioxidant capacity of phenolic compounds extracts recovered from grapevine bunch stem and cane by-products. Food Chemistry, 2021, 348, 129063.	4.2	20

#	Article	IF	CITATIONS
55	Abiotic Stress Tolerance Induced by Endophytic PGPR. Soil Biology, 2013, , 151-163.	0.6	19
56	Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. Journal of Soil Science and Plant Nutrition, 2020, 20, 1614-1624.	1.7	18
57	RESEARCH NOTE Photochemistry and Photobiology, 1995, 62, 800-803.	1.3	16
58	Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines. Theoretical and Experimental Plant Physiology, 2016, 28, 11-22.	1.1	15
59	Accumulation of the labdane diterpene Marrubiin in glandular trichome cells along the ontogeny of Marrubium vulgare plants. Plant Growth Regulation, 2008, 56, 71-76.	1.8	14
60	Growth habit of Lotus tenuis shoots and the influence of photosynthetic photon flux density, sucrose and endogenous levels of gibberellins A1 and A3. Physiologia Plantarum, 2008, 98, 381-388.	2.6	14
61	Interactions between a plant growth-promoting rhizobacterium and smoke-derived compounds and their effect on okra growth. Journal of Plant Nutrition and Soil Science, 2015, 178, 741-747.	1.1	14
62	Use of Plant Growth-Promoting Rhizobacteria as Biocontrol Agents: Induced Systemic Resistance Against Biotic Stress in Plants. , 2017, , 133-152.		14
63	Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera L.) cv. Malbec. Plant Growth Regulation, 2014, 74, 193-197.	1.8	13
64	Plant growth promoting rhizobacteria alleviate stress by AsIII in grapevine. Agriculture, Ecosystems and Environment, 2018, 267, 100-108.	2.5	13
65	Tandem absorbance and fluorescence detection following liquid chromatography for the profiling of multiclass phenolic compounds in different winemaking products. Food Chemistry, 2021, 338, 128030.	4.2	13
66	Water stress and abscisic acid exogenous supply produce differential enhancements in the concentration of selected phenolic compounds in Cabernet Sauvignon. Journal of Berry Research, 2012, 2, 33-44.	0.7	12
67	High-throughput modified QuEChERS method for the determination of the mycotoxin tenuazonic acid in wine grapes. RSC Advances, 2016, 6, 95670-95679.	1.7	12
68	Filter-vial dispersive solid-phase extraction as a simplified clean-up for determination of ethylphenols in red wines. Food Chemistry, 2017, 230, 405-410.	4.2	11
69	Rootstocks increase grapevine tolerance to NaCl through ion compartmentalization and exclusion. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	10
70	Role of Abscisic Acid Producing PGPR in Sustainable Agriculture. Sustainable Development and Biodiversity, 2015, , 259-282.	1.4	10
71	QuEChERS Method for the Determination of 3‑Alkyl‑2‑Methoxypyrazines in Wines by Gas Chromatography-Mass Spectrometry. Food Analytical Methods, 2016, 9, 3352-3359.	1.3	8
72	Abscisic Acid's Role in the Modulation of Compounds that Contribute to Wine Quality. Plants, 2021, 10, 938.	1.6	8

#	Article	IF	CITATIONS
73	Spray with plant growth regulators at full bloom may improve quality for storage of 'Superior Seedless' table grapes by modifying the vascular system of the bunch. Postharvest Biology and Technology, 2021, 176, 111522.	2.9	8
74	Indole-3-acetic acid attenuates the fungal lesions in infected potato tubers. Physiologia Plantarum, 2006, 127, 205-211.	2.6	7
75	Natural occurrence and production of tenuazonic acid in wine grapes in Argentina. Food Science and Nutrition, 2018, 6, 523-531.	1.5	7
76	Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio. PLoS ONE, 2016, 11, e0167767.	1.1	7
77	Title is missing!. Plant Growth Regulation, 2001, 34, 209-214.	1.8	6
78	Grapevine tissues and phenology differentially affect soluble carbohydrates determination by capillary electrophoresis. Plant Physiology and Biochemistry, 2017, 118, 394-399.	2.8	6
79	Carotenoid profile produced by <i>Bacillus licheniformis</i> Rt4M10 isolated from grapevines grown in high altitude and their antioxidant activity. International Journal of Food Science and Technology, 2018, 53, 2697-2705.	1.3	5
80	Title is missing!. Plant Growth Regulation, 2002, 38, 231-236.	1.8	4
81	ABA Increased Soybean Yield by Enhancing Production of Carbohydrates and Their Allocation in Seed. , 0, , .		2
82	Abscisic Acid and Fruit Ripening: Its Role in Grapevine Acclimation to the Environment, a Case of Study. Plant in Challenging Environments, 2021, , 191-209.	0.4	0