List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652047/publications.pdf Version: 2024-02-01

<u> Βο Ζηλης</u>

#	Article	IF	CITATIONS
1	Cocktail polysaccharides isolated from Ecklonia kurome against the SARS-CoV-2 infection. Carbohydrate Polymers, 2022, 275, 118779.	5.1	9
2	A new screening system for entry inhibitors based on cell-to-cell transmitted syncytia formation mediated by self-propagating hybrid VEEV-SARS-CoV-2 replicon. Emerging Microbes and Infections, 2022, 11, 465-476.	3.0	4
3	High titer self-propagating capsidless Chikungunya virus generated in Vero cells as a strategy for alphavirus vaccine development. Journal of Virology, 2022, , JVI0148021.	1.5	5
4	ACE2-Targeting antibody suppresses SARS-CoV-2 Omicron and Delta variants. Signal Transduction and Targeted Therapy, 2022, 7, 43.	7.1	14
5	Different pathogenesis of SARS-CoV-2 Omicron variant in wild-type laboratory mice and hamsters. Signal Transduction and Targeted Therapy, 2022, 7, 62.	7.1	26
6	Sequence duplication in 3′ UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerging Microbes and Infections, 2022, 11, 123-135.	3.0	5
7	Berbamine hydrochloride potently inhibits SARS-CoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Neglected Tropical Diseases, 2022, 16, e0010363.	1.3	14
8	Self-Assembling Nanovaccine Confers Complete Protection Against Zika Virus Without Causing Antibody-Dependent Enhancement. Frontiers in Immunology, 2022, 13, .	2.2	4
9	In Vitro and In Vivo Characterization of a New Strain of Mosquito Flavivirus Derived from Culicoides. Viruses, 2022, 14, 1298.	1.5	1
10	Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Research, 2022, 204, 105365.	1.9	7
11	Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacologica Sinica, 2021, 42, 1347-1353.	2.8	66
12	Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Research, 2021, 49, 1567-1580.	6.5	14
13	Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Reports, 2021, 34, 108915.	2.9	127
14	SARS-CoV-2 replicon for high-throughput antiviral screening. Journal of General Virology, 2021, 102, .	1.3	17
15	RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	4
16	Development and Characterization of SYBR Green I Based RT-PCR Assay for Detection of Omsk Hemorrhagic Fever Virus. Virologica Sinica, 2021, , 1.	1.2	0
17	Rational design of West Nile virus vaccine through large replacement of 3′ UTR with internal poly(A). EMBO Molecular Medicine, 2021, 13, e14108.	3.3	8
18	ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduction and Targeted Therapy, 2021, 6, 315.	7.1	53

BO ZHANG

#	Article	IF	CITATIONS
19	In Vitro Inhibition of Alphaviruses by Lycorine. Virologica Sinica, 2021, 36, 1465-1474.	1.2	6
20	A non-RBM targeted RBD specific antibody neutralizes SARS-CoV-2 inducing S1 shedding. Biochemical and Biophysical Research Communications, 2021, 571, 152-158.	1.0	5
21	Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice. Signal Transduction and Targeted Therapy, 2021, 6, 369.	7.1	16
22	Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nature Communications, 2021, 12, 6304.	5.8	42
23	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	1
24	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	10
25	Screening of Natural Extracts for Inhibitors against Japanese Encephalitis Virus Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
26	A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability. Nucleic Acids Research, 2020, 48, 1392-1405.	6.5	22
27	Short Direct Repeats in the 3′ Untranslated Region Are Involved in Subgenomic Flaviviral RNA Production. Journal of Virology, 2020, 94, .	1.5	11
28	A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 218.	7.1	41
29	Inhibition of Na+/K+ ATPase blocks Zika virus infection in mice. Communications Biology, 2020, 3, 380.	2.0	15
30	A novel rabies vaccine based on infectious propagating particles derived from hybrid VEEV-Rabies replicon. EBioMedicine, 2020, 56, 102819.	2.7	15
31	Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner. Signal Transduction and Targeted Therapy, 2020, 5, 266.	7.1	45
32	Generation and characterization of Japanese encephalitis virus expressing GFP reporter gene for high throughput drug screening. Antiviral Research, 2020, 182, 104884.	1.9	28
33	A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584, 120-124.	13.7	1,237
34	A mouse model for SARS-CoV-2 infection by exogenous delivery of hACE2 using alphavirus replicon particles. Cell Research, 2020, 30, 1046-1048.	5.7	21
35	A replication-defective Japanese encephalitis virus (JEV) vaccine candidate with NS1 deletion confers dual protection against JEV and West Nile virus in mice. Npj Vaccines, 2020, 5, 73.	2.9	15
36	A conformation-based intra-molecular initiation factor identified in the flavivirus RNA-dependent RNA polymerase. PLoS Pathogens, 2020, 16, e1008484.	2.1	26

#	Article	IF	CITATIONS
37	Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerging Microbes and Infections, 2020, 9, 1170-1173.	3.0	100
38	Anti-flavivirus activity of polyoxometalate. Antiviral Research, 2020, 179, 104813.	1.9	14
39	Different Degrees of 5'-to-3' DAR Interactions Modulate Zika Virus Genome Cyclization and Host-Specific Replication. Journal of Virology, 2020, 94, .	1.5	11
40	Title is missing!. , 2020, 16, e1008484.		0
41	Title is missing!. , 2020, 16, e1008484.		0
42	Title is missing!. , 2020, 16, e1008484.		0
43	Title is missing!. , 2020, 16, e1008484.		0
44	Visualization of chikungunya virus infection <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2019, 8, 1574-1583.	3.0	12
45	Development of a rapid antiviral screening assay based on eGFP reporter virus of Mayaro virus. Antiviral Research, 2019, 168, 82-90.	1.9	15
46	Characterization of two engineered dimeric Zika virus envelope proteins as immunogens for neutralizing antibody selection and vaccine design. Journal of Biological Chemistry, 2019, 294, 10638-10648.	1.6	8
47	Replication-Defective West Nile Virus with NS1 Deletion as a New Vaccine Platform for Flavivirus. Journal of Virology, 2019, 93, .	1.5	9
48	Infectious Chikungunya Virus (CHIKV) with a Complete Capsid Deletion: a New Approach for a CHIKV Vaccine. Journal of Virology, 2019, 93, .	1.5	36
49	Trans Complementation of Replication-defective Omsk Hemorrhagic Fever Virus for Antiviral Study. Virologica Sinica, 2019, 34, 412-422.	1.2	6
50	<i>N</i> 6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Research, 2019, 47, 362-374.	6.5	133
51	Development of a replicon cell line-based high throughput antiviral assay for screening inhibitors of Zika virus. Antiviral Research, 2018, 150, 148-154.	1.9	33
52	Mosquito-Associated Viruses in China. Virologica Sinica, 2018, 33, 5-20.	1.2	59
53	Development and evaluation of oneâ€step multiplex realâ€time RTâ€PCR assay for simultaneous detection of Zika virus and Chikungunya virus. Journal of Medical Virology, 2018, 90, 389-396.	2.5	10
54	Homologous RNA secondary structure duplications in 3′ untranslated region influence subgenomic RNA production and replication of dengue virus. Virology, 2018, 524, 114-126.	1.1	12

#	Article	IF	CITATIONS
55	Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses, 2018, 10, 365.	1.5	4
56	Using a Virion Assembly-Defective Dengue Virus as a Vaccine Approach. Journal of Virology, 2018, 92, .	1.5	13
57	Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening. Antiviral Research, 2017, 141, 38-47.	1.9	13
58	Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection. Journal of Virology, 2017, 91, .	1.5	47
59	Development of a stable Japanese encephalitis virus replicon cell line for antiviral screening. Archives of Virology, 2017, 162, 3417-3423.	0.9	7
60	Extensive evolution analysis of the global chikungunya virus strains revealed the origination of CHIKV epidemics in Pakistan in 2016. Virologica Sinica, 2017, 32, 520-532.	1.2	14
61	West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. Journal of Virology, 2017, 91, .	1.5	63
62	Detection, isolation, and characterization of chikungunya viruses associated with the Pakistan outbreak of 2016–2017. Virologica Sinica, 2017, 32, 511-519.	1.2	10
63	Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling. Theranostics, 2017, 7, 912-925.	4.6	31
64	Recovery of the Zika virus through an in vitro ligation approach. Journal of General Virology, 2017, 98, 1739-1743.	1.3	15
65	Development of Neutralization Assay Using an eGFP Chikungunya Virus. Viruses, 2016, 8, 181.	1.5	21
66	Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science, 2016, 354, 1170-1173.	6.0	134
67	Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus. Journal of Virology, 2016, 90, 5735-5749.	1.5	48
68	Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells. Virologica Sinica, 2016, 31, 176-179.	1.2	46
69	Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chemical Biology, 2016, 23, 1113-1122.	2.5	107
70	Detection of Zika virus by SYBR green one-step real-time RT-PCR. Journal of Virological Methods, 2016, 236, 93-97.	1.0	59
71	Zika virus: a flavivirus caused pandemics in Latin America. Virologica Sinica, 2016, 31, 101-102.	1.2	3
72	Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Research, 2016, 211, 17-24.	1.1	25

BO ZHANG

#	Article	IF	CITATIONS
73	Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses, 2015, 7, 5801-5812.	1.5	112
74	How Ebola has been evolving in West Africa. Trends in Microbiology, 2015, 23, 387-388.	3.5	3
75	Genetic interaction between NS4A and NS4B for replication of Japanese encephalitis virus. Journal of General Virology, 2015, 96, 1264-1275.	1.3	24
76	Identifying the pattern of molecular evolution for Zaire ebolavirus in the 2014 outbreak in West Africa. Infection, Genetics and Evolution, 2015, 32, 51-59.	1.0	19
77	Development of a stable Gaussia luciferase enterovirus 71 reporter virus. Journal of Virological Methods, 2015, 219, 62-66.	1.0	21
78	Structure-Based Mutational Analysis of Several Sites in the E Protein: Implications for Understanding the Entry Mechanism of Japanese Encephalitis Virus. Journal of Virology, 2015, 89, 5668-5686.	1.5	40
79	Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virologica Sinica, 2015, 30, 269-276.	1.2	13
80	Perturbation in the Conserved Methyltransferase-Polymerase Interface of Flavivirus NS5 Differentially Affects Polymerase Initiation and Elongation. Journal of Virology, 2015, 89, 249-261.	1.5	44
81	The Interface between Methyltransferase and Polymerase of NS5 Is Essential for Flavivirus Replication. PLoS Neglected Tropical Diseases, 2014, 8, e2891.	1.3	38
82	A novel reporter system for neutralizing and enhancing antibody assay against dengue virus. BMC Microbiology, 2014, 14, 44.	1.3	13
83	Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology, 2014, 448, 15-25.	1.1	63
84	Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. Journal of General Virology, 2014, 95, 806-815.	1.3	40
85	Inhibition of Enterovirus 71 by Adenosine Analog NITD008. Journal of Virology, 2014, 88, 11915-11923.	1.5	59
86	A positively selected mutation in the WNV 2K peptide confers resistance to superinfection exclusion in vivo. Virology, 2014, 464-465, 228-232.	1.1	15
87	Noninvasive bioluminescence imaging of dengue virus infection in the brain of A129 mice. Applied Microbiology and Biotechnology, 2013, 97, 4589-4596.	1.7	11
88	Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Research, 2013, 97, 198-205.	1.9	54
89	Development and characterization of West Nile virus replicon expressing secreted Gaussia Luciferase. Virologica Sinica, 2013, 28, 161-166.	1.2	6
90	Crystal Structure of Enterovirus 71 RNA-Dependent RNA Polymerase Complexed with Its Protein Primer VPg: Implication for a <i>trans</i> Mechanism of VPg Uridylylation. Journal of Virology, 2013, 87, 5755-5768.	1.5	66

#	Article	IF	CITATIONS
91	Rational Design of a Flavivirus Vaccine by Abolishing Viral RNA 2′- <i>O</i> Methylation. Journal of Virology, 2013, 87, 5812-5819.	1.5	81
92	Genetic analysis of West Nile virus containing a complete 3′CSI RNA deletion. Virology, 2010, 408, 138-145.	1.1	21
93	Exclusion of West Nile Virus Superinfection through RNA Replication. Journal of Virology, 2009, 83, 11765-11776.	1.5	84
94	A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384, 242-252.	1.1	113
95	Identification and characterization of inhibitors of West Nile virus. Antiviral Research, 2009, 83, 71-79.	1.9	33
96	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	3.3	323
97	West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions. Virology, 2008, 373, 1-13.	1.1	88
98	Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology, 2008, 381, 123-135.	1.1	71
99	Genetic Interactions among the West Nile Virus Methyltransferase, the RNA-Dependent RNA Polymerase, and the $5\hat{a}\in^2$ Stem-Loop of Genomic RNA. Journal of Virology, 2008, 82, 7047-7058.	1.5	53