Nathan D Mathewson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6652002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565, 234-239.	13.7	956
2	Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 2016, 17, 505-513.	7.0	536
3	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	6.0	461
4	Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39, 779-792.e11.	7.7	245
5	Inhibitory CD161 receptor identified in glioma-infiltrating TÂcells by single-cell analysis. Cell, 2021, 184, 1281-1298.e26.	13.5	210
6	Integrin αvβ6–TGFβ–SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell, 2021, 39, 54-67.e9.	7.7	99
7	Single-Cell RNA-Seq Reveals Cellular Hierarchies and Impaired Developmental Trajectories in Pediatric Ependymoma. Cancer Cell, 2020, 38, 44-59.e9.	7.7	94
8	Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Frontiers in Immunology, 2016, 7, 539.	2.2	85
9	Mature T cell responses are controlled by microRNA-142. Journal of Clinical Investigation, 2015, 125, 2825-2840.	3.9	81
10	Siglec-G–CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123, 3512-3523.	0.6	76
11	Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood, 2013, 122, 2062-2073.	0.6	66
12	Opposing immune and genetic mechanisms shape oncogenic programs in synovial sarcoma. Nature Medicine, 2021, 27, 289-300.	15.2	64
13	PU.1-Dependent Transcriptional Regulation of miR-142 Contributes to Its Hematopoietic Cell–Specific Expression and Modulation of IL-6. Journal of Immunology, 2013, 190, 4005-4013.	0.4	60
14	CARM1 Inhibition Enables Immunotherapy of Resistant Tumors by Dual Action on Tumor Cells and T Cells. Cancer Discovery, 2021, 11, 2050-2071.	7.7	43
15	A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation. Cell Reports, 2017, 19, 2645-2656.	2.9	42
16	BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood, 2015, 125, 2724-2728.	0.6	41
17	Allogeneic T cell responses are regulated by a specific miRNA-mRNA network. Journal of Clinical Investigation, 2013, 123, 4739-4754.	3.9	36
18	Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation. Blood, 2013, 121, 4231-4241.	0.6	34

NATHAN D MATHEWSON

#	Article	IF	CITATIONS
19	Donor- but not host-derived interleukin-10 contributes to the regulation of experimental graft-versus-host disease. Journal of Leukocyte Biology, 2012, 91, 667-675.	1.5	29
20	Influence of Donor Microbiota on the Severity of Experimental Graft-versus-Host-Disease. Biology of Blood and Marrow Transplantation, 2013, 19, 164-168.	2.0	29
21	SAG/Rbx2-Dependent Neddylation Regulates T-Cell Responses. American Journal of Pathology, 2016, 186, 2679-2691.	1.9	25
22	Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Science Translational Medicine, 2020, 12, .	5.8	17
23	The Role of Dendritic Cells in Graft-Versus-Tumor Effect. Frontiers in Immunology, 2014, 5, 66.	2.2	14
24	The Microbiome and Graft Versus Host Disease. Current Stem Cell Reports, 2015, 1, 39-47.	0.7	14
25	Unbiased Metabolic Profiling Uncovers a Crucial Role for the Microbial Metabolite Butyrate in Modulating GI Epithelial Cell Damage from Gvhd. Blood, 2014, 124, 536-536.	0.6	12
26	SAG/RBX2 E3 Ubiquitin Ligase Differentially Regulates Inflammatory Responses of Myeloid Cell Subsets. Frontiers in Immunology, 2018, 9, 2882.	2.2	11
27	Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncolmmunology, 2015, 4, e1016699.	2.1	8
28	Genome-Wide STAT3 Binding Analysis after Histone Deacetylase Inhibition Reveals Novel Target Genes in Dendritic Cells. Journal of Innate Immunity, 2017, 9, 126-144.	1.8	8
29	Host CD8α+Dendritic Cells May Be a Key Factor for Separating Graft-versus-Host Disease from Graft-versus-Leukemia. Biology of Blood and Marrow Transplantation, 2015, 21, 775-776.	2.0	6
30	NLRP6 in Host Target Tissues Exacerbates Graft-Versus-Host Disease. Blood, 2015, 126, 148-148.	0.6	3
31	NLRP6 Expression By the Hosts Enhances the Severity of Experimental Graft-Versus-Host Disease (GVHD). Blood, 2014, 124, 2421-2421.	0.6	3
32	Atypical E2F Dependent Dysregulation Of Cell Cycling By Microrna-142 Regulates T-Cell Responses and Experimental Graft-Versus-Host Disease. Blood, 2013, 122, 136-136.	0.6	2
33	Sugar polymers exacerbate lung GVHD. Blood, 2015, 125, 2883-2884.	0.6	1
34	Donor T Cells Intrinsic Responses to Damps Regulated By Siglec-G-CD24 Axis Mitigate Gvhd but Maintain GVL in Experimental BMT Model. Blood, 2015, 126, 229-229.	0.6	1
35	ATG5 Dependent Autophagy Uncouples T Cell Functions and Modulates Experimental Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2016, 22, S91.	2.0	0
36	Donor T Cells Intrinsic Responses to DAMPs Regulated By Siglec-G-CD24 Axis Mitigate GVHD but Maintain GVL in Experimental Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, S57-S58.	2.0	0

#	Article	IF	CITATIONS
37	OTME-7. Cancer - immune cell interactions drive transitions to mesenchymal-like state in glioblastoma. Neuro-Oncology Advances, 2021, 3, ii14-ii15.	0.4	0
38	CD24-Siglec-G Interaction Plays an Important in Reducing Experimental Graft-Versus-Host Disease (GVHD). Blood, 2012, 120, 453-453.	0.6	0
39	Genome-Wide Binding Studies of Acetyl-STAT3 Demonstrates a Novel Regulatory Pathway in Dendritic Cells. Blood, 2015, 126, 647-647.	0.6	0
40	ATG5 Dependent Autophagy Uncouples T Cell Functions and Modulates Experimental Graft-Versus-Host Disease. Blood, 2015, 126, 149-149.	0.6	0
41	Microbial Metabolite Sensor GPCR43 Controls Severity of Experimental Gvhd. Blood, 2016, 128, 1157-1157.	0.6	0