
Ana B Moldes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of biosurfactant extract from corn steep water as a potential ingredient in antiacne formulations. Journal of Dermatological Treatment, 2022, 33, 393-400.	1.1	6
2	Solubilization of cuprous oxide in water using biosurfactant extracts from corn steep liquor: a comparative study. Scientific Reports, 2022, 12, 2695.	1.6	3
3	Characterization of extracellular and cell bound biosurfactants produced by Aneurinibacillus aneurinilyticus isolated from commercial corn steep liquor. Microbiological Research, 2021, 242, 126614.	2.5	22
4	Adding value to secondary streams of corn wet milling industry. CYTA - Journal of Food, 2021, 19, 675-681.	0.9	6
5	Nanomaterials synthesized by biosurfactants. Comprehensive Analytical Chemistry, 2021, , 267-301.	0.7	7
6	Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. International Journal of Molecular Sciences, 2021, 22, 2371.	1.8	70
7	Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Applied Sciences (Switzerland), 2021, 11, 5904.	1.3	4
8	Evaluation of Calcium Alginate-Based Biopolymers as Potential Component of Membranes for Recovering Biosurfactants from Corn Steep Water. Water (Switzerland), 2021, 13, 2396.	1.2	1
9	Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. Journal of Surfactants and Detergents, 2020, 23, 79-90.	1.0	24
10	Selective Adsorption Capacity of Grape Marc Hydrogel for Adsorption of Binary Mixtures of Dyes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
11	Towards more Ecofriendly Pesticides: Use of Biosurfactants Obtained from the Corn Milling Industry as Solubilizing Agent of Copper Oxychloride. Journal of Surfactants and Detergents, 2020, 23, 1055-1066.	1.0	12
12	Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS Omega, 2020, 5, 31381-31390.	1.6	21
13	Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels. Molecules, 2020, 25, 5183.	1.7	6
14	Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods, 2020, 9, 1747.	1.9	7
15	Extraction, separation and characterization of lipopeptides and phospholipids from corn steep water. Separation and Purification Technology, 2020, 248, 117076.	3.9	30
16	Novel Multifunctional Biosurfactant Obtained from Corn as a Stabilizing Agent for Antidandruff Formulations Based on Zn Pyrithione Powder. ACS Omega, 2020, 5, 5704-5712.	1.6	14
17	Efficient Adsorption of Lead Ions onto Alginate–Grape Marc Hybrid Beads: Optimization and Bioadsorption Kinetics. Environmental Modeling and Assessment, 2020, 25, 677-687.	1.2	3
18	Potential application of a multifunctional biosurfactant extract obtained from corn as stabilizing agent of vitamin C in cosmetic formulations. Sustainable Chemistry and Pharmacy, 2020, 16, 100248.	1.6	15

#	Article	IF	CITATIONS
19	Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods, 2020, 9, 662.	1.9	12
20	Effect of biosurfactant extract obtained from the cornâ€milling industry on probiotic bacteria in drinkable yogurt. Journal of the Science of Food and Agriculture, 2019, 99, 824-830.	1.7	27
21	Isolation and characterization of a microorganism that produces biosurfactants in corn steep water. CYTA - Journal of Food, 2019, 17, 509-516.	0.9	22
22	A Multifunctional Biosurfactant Extract Obtained From Corn Steep Water as Bactericide for Agrifood Industry. Foods, 2019, 8, 410.	1.9	28
23	Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application. Environmental Science and Pollution Research, 2019, 26, 21085-21097.	2.7	21
24	Evaluation of a biosurfactant extract obtained from corn for dermal application. International Journal of Pharmaceutics, 2019, 564, 225-236.	2.6	32
25	Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. Journal of Pharmaceutical Sciences, 2019, 108, 2296-2304.	1.6	30
26	Study of the synergic effect between mica and biosurfactant to stabilize Pickering emulsions containing Vitamin E using a triangular design. Journal of Colloid and Interface Science, 2019, 537, 34-42.	5.0	19
27	The effect of the presence of biosurfactant on the permeation of pharmaceutical compounds through silicone membrane. Colloids and Surfaces B: Biointerfaces, 2019, 176, 456-461.	2.5	21
28	Recycled Lactobacillus pentosus biomass can regenerate biosurfactants after various fermentative and extractive cycles. Biochemical Engineering Journal, 2018, 132, 191-195.	1.8	13
29	Industrial Symbiosis Between the Winery and Environmental Industry Through the Utilization of Grape Marc for Water Desalination Containing Copper(II). Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
30	Design and characterization of greener sunscreen formulations based on mica powder and a biosurfactant extract. Powder Technology, 2018, 327, 442-448.	2.1	36
31	Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. International Journal of Biological Macromolecules, 2018, 109, 971-979.	3.6	62
32	Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. Tenside, Surfactants, Detergents, 2018, 55, 273-280.	0.5	24
33	LINKING EDUCATION AND INNOVATION IN URBAN WASTE WATER TREATMENT PLANTS THROUGH FINAL DEGREE PROJECTS. , 2018, , .		0
34	FINAL DEGREE PROJECTS AS VEHICLE TO PROMOTE INDUSTRIAL SYMBIOSIS IN ENGINEERING SCHOOLS. , 2018, , .		0
35	Biosurfactants in cosmetic formulations: trends and challenges. Critical Reviews in Biotechnology, 2017, 37, 911-923.	5.1	167
36	Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair. RSC Advances, 2017, 7, 16444-16452.	1.7	22

#	Article	IF	CITATIONS
37	Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 2017, 155, 522-529.	2.5	96
38	Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. Journal of Industrial and Engineering Chemistry, 2017, 55, 40-49.	2.9	53
39	Ionic Behavior Assessment of Surface-Active Compounds from Corn Steep Liquor by Exchange Resins. Journal of Surfactants and Detergents, 2017, 20, 207-217.	1.0	21
40	Nutraceuticals and Food Additives. , 2017, , 143-164.		23
41	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials, 2017, 7, 139.	1.9	42
42	Adsorption of natural surface active compounds obtained from corn on human hair. RSC Advances, 2016, 6, 63064-63070.	1.7	25
43	Evaluation of a cactus mucilage biocomposite to remove total arsenic from water. Environmental Technology and Innovation, 2016, 6, 69-79.	3.0	21
44	A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food and Function, 2016, 7, 3724-3732.	2.1	39
45	Kinetic and morphology study of alginate-vineyard pruning waste biocomposite vs. non modified vineyard pruning waste for dye removal. Journal of Environmental Sciences, 2015, 38, 158-167.	3.2	23
46	Selective removal of ATP degradation products from food matrices II: Rapid screening of hypoxanthine and inosine by molecularly imprinted matrix solid-phase dispersion for evaluation of fish freshness. Talanta, 2015, 135, 58-66.	2.9	19
47	Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor. Journal of Agricultural and Food Chemistry, 2015, 63, 7143-7150.	2.4	22
48	Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite. Carbohydrate Polymers, 2015, 131, 186-196.	5.1	31
49	Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	21
50	Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess and Biosystems Engineering, 2015, 38, 1629-1637.	1.7	54
51	Physicochemical study of a bio-based adsorbent made from grape marc. Ecological Engineering, 2015, 84, 190-193.	1.6	12
52	Optimization of extraction conditions and fatty acid characterization of <i>Lactobacillus pentosus</i> cellâ€bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture, 2015, 95, 313-320.	1.7	68
53	Saltâ€Free Aqueous Extraction of a Cellâ€Bound Biosurfactant: a Kinetic Study. Journal of Surfactants and Detergents, 2015, 18, 267-274.	1.0	19
54	Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydrate Polymers, 2015, 115, 129-138.	5.1	51

#	Article	IF	CITATIONS
55	Review on the Utilization of Low-cost Substrates to Obtain Metabolites for Protection of the Environment. , 2014, , 85-96.		0
56	Removal of pigments from aqueous solution by a calcium alginate–grape marc biopolymer: A kinetic study. Carbohydrate Polymers, 2014, 101, 954-960.	5.1	26
57	Elimination of micronutrients from winery wastewater using entrapped grape marc in alginate beads. CYTA - Journal of Food, 2014, 12, 73-79.	0.9	12
58	Treatment of wastewater from sugarcane using entrapped activated carbon. CYTA - Journal of Food, 2014, 12, 189-194.	0.9	4
59	Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. Journal of Agricultural and Food Chemistry, 2014, 62, 5451-5457.	2.4	43
60	Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere, 2014, 111, 24-31.	4.2	32
61	Entrapped Peat in Alginate Beads as Green Adsorbent for the Elimination of Dye Compounds from Vinasses. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	23
62	Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. Journal of Environmental Management, 2013, 116, 18-26.	3.8	115
63	Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. Journal of Environmental Management, 2013, 128, 655-660.	3.8	28
64	Partial Characterization of Biosurfactant from <i>Lactobacillus pentosus</i> and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. BioMed Research International, 2013, 2013, 1-6.	0.9	52
65	New Trends in Biotechnological Processes to Increase the Environmental Protection. BioMed Research International, 2013, 2013, 1-2.	0.9	1
66	Plant tests for determining the suitability of grape marc composts as components of plant growth media. Waste Management and Research, 2012, 30, 1059-1065.	2.2	18
67	Study of the Synergistic Effects of Salinity, pH, and Temperature on the Surface-Active Properties of Biosurfactants Produced by <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2012, 60, 1258-1265.	2.4	43
68	Optimization of batch operating conditions for the decolourization of vinasses using surface response methodology. Microchemical Journal, 2012, 102, 83-90.	2.3	13
69	Evaluation of Non-Conventional Coagulants to Remove Turbidity from Water. Water, Air, and Soil Pollution, 2012, 223, 591-598.	1.1	13
70	Distribution and availability of trace elements in municipal solid waste composts. Journal of Environmental Monitoring, 2011, 13, 201-211.	2.1	45
71	Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost. Waste Management and Research, 2011, 29, 1177-1184.	2.2	24
72	Ex Situ Treatment of Hydrocarbon-Contaminated Soil Using Biosurfactants from <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 9443-9447.	2.4	62

#	Article	IF	CITATIONS
73	Valorization of winery waste vs. the costs of not recycling. Waste Management, 2011, 31, 2327-2335.	3.7	261
74	Optimization of the dose of calcium lactate as a new coagulant for the coagulation–flocculation of suspended particles in water. Desalination, 2011, 280, 63-71.	4.0	19
75	Quantification of phototrophic biomass on rocks: optimization of chlorophyll-a extraction by response surface methodology. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 179-188.	1.4	15
76	Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters. Bioresource Technology, 2011, 102, 6437-6442.	4.8	22
77	Application of an incomplete factorial design for the formation of an autotrophic biofilm on river bed sediments at a microcosms scale. Journal of Soils and Sediments, 2010, 10, 1623-1632.	1.5	6
78	Stabilization of Kerosene/Water Emulsions Using Bioemulsifiers Obtained by Fermentation of Hemicellulosic Sugars with Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 2010, 58, 10162-10168.	2.4	17
79	Can Stability and Maturity Be Evaluated in Finished Composts from Different Sources?. Compost Science and Utilization, 2010, 18, 22-31.	1.2	23
80	Utilization of a Factorial Design To Study the Composting of Hydrolyzed Grape Marc and Vinification Lees. Journal of Agricultural and Food Chemistry, 2010, 58, 3085-3092.	2.4	22
81	Amelioration of the Physical Properties of Slate Processing Fines using Grape Marc Compost and Vermicompost. Soil Science Society of America Journal, 2009, 73, 1251-1260.	1.2	17
82	Magnetic susceptibility as an indicator of heavy metal contamination in compost. Waste Management and Research, 2009, 27, 46-51.	2.2	8
83	Treatment of red wine vinasses with non-conventional substrates for removing coloured compounds. Water Science and Technology, 2009, 59, 1585-1592.	1.2	15
84	Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environmental Monitoring and Assessment, 2009, 153, 147-159.	1.3	17
85	Minerals and Organic Nitrogen Present in Grape Marc Hydrolyzates Enhance Xylose Consumption by Lactobacillus pentosus. Applied Biochemistry and Biotechnology, 2009, 152, 262-274.	1.4	4
86	Properties of slate mining wastes incubated with grape marc compost under laboratory conditions. Waste Management, 2009, 29, 579-584.	3.7	15
87	Utilization of MSW compost for organic matter conservation in agricultural soils of NW Spain. Resources, Conservation and Recycling, 2009, 53, 529-534.	5.3	38
88	Ferulic acid and p-coumaric acid solubilization by alkaline hydrolysis of the solid residue obtained after acid prehydrolysis of vine shoot prunings: Effect of the hydroxide and pH. Biochemical Engineering Journal, 2009, 43, 129-134.	1.8	40
89	Reduction of Water Repellence of Hydrophobic Plant Substrates Using Biosurfactant Produced from Hydrolyzed Grape Marc. Journal of Agricultural and Food Chemistry, 2009, 57, 4895-4899.	2.4	13
90	Development of a Factorial Design To Study the Effect of the Major Hemicellulosic Sugars on the Production of Surface-Active Compounds by <i>L. pentosus</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 9057-9062.	2.4	13

#	Article	IF	CITATIONS
91	Toxicity of AnllÃ ³ ns River Sediment Extracts Using Microtox and the Zucconi Phytotoxicity Test. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 225-230.	1.3	23
92	Revalorisation of vine trimming wastes using <i>Lactobacillus acidophilus</i> and <i>Debaryomyces hansenii</i> . Journal of the Science of Food and Agriculture, 2008, 88, 2298-2308.	1.7	41
93	Negative effect of discharging vinification lees on soils. Bioresource Technology, 2008, 99, 5991-5996.	4.8	28
94	Influence of the Metabolism Pathway on Lactic Acid Production from Hemicellulosic Trimming Vine Shoots Hydrolyzates Using Lactobacillus pentosus. Biotechnology Progress, 2008, 21, 793-798.	1.3	82
95	Stability and Emulsifying Capacity of Biosurfactants Obtained from Lignocellulosic Sources Using <i>Lactobacillus pentosus</i> . Journal of Agricultural and Food Chemistry, 2008, 56, 8074-8080.	2.4	60
96	RELATIONSHIP BETWEEN HEAVY METALS AND PHYTOTOXICITY IN COMPOSTS RELACIÓN ENTRE METALES PESADOS Y FITOTOXICIDAD EN COMPOSTS. Ciencia Y Tecnologia Alimentaria, 2008, 6, 143-151.	0.4	18
97	Characterization of slate processing fines according to parameters of relevance for mine spoil reclamation. Applied Clay Science, 2008, 41, 172-180.	2.6	9
98	Extraction study of algal pigments in river bed sediments by applying factorial designs. Talanta, 2007, 72, 1546-1551.	2.9	26
99	A pot experiment with mixtures of slate processing fines and compost. Geoderma, 2007, 141, 363-369.	2.3	14
100	Assessment of municipal solid waste compost quality using standardized methods before preparation of plant growth media. Waste Management and Research, 2007, 25, 99-108.	2.2	36
101	Evaluation of Biosurfactant Production from Various Agricultural Residues by Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 2007, 55, 4481-4486.	2.4	97
102	Integral utilisation of barley husk for the production of food additives. Journal of the Science of Food and Agriculture, 2007, 87, 1000-1008.	1.7	37
103	Simultaneous lactic acid and xylitol production from vine trimming wastes. Journal of the Science of Food and Agriculture, 2007, 87, 1603-1612.	1.7	35
104	Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresource Technology, 2007, 98, 3069-3075.	4.8	87
105	Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 2007, 78, 405-412.	2.7	95
106	Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochemistry, 2007, 42, 1010-1020.	1.8	113
107	Comparison between Different Hydrolysis Processes of Vine-Trimming Waste to Obtain Hemicellulosic Sugars for Further Lactic Acid Conversion. Applied Biochemistry and Biotechnology, 2007, 143, 244-256.	1.4	32
108	Evaluation of mesophilic biodegraded grape marc as soil fertilizer. Applied Biochemistry and Biotechnology, 2007, 141, 27-36.	1.4	44

#	Article	IF	CITATIONS
109	Physiologically based extraction of heavy metals in compost: Preliminary results. Journal of Trace Elements in Medicine and Biology, 2007, 21, 83-85.	1.5	7
110	Tartaric Acid Recovery from Distilled Lees and Use of the Residual Solid as an Economic Nutrient forLactobacillus. Journal of Agricultural and Food Chemistry, 2006, 54, 7904-7911.	2.4	51
111	Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 2006, 28, 109-116.	1.8	143
112	Complete Bioconversion of Hemicellulosic Sugars From Agricultural Residues Into Lactic Acid by Lactobacillus pentosus. Applied Biochemistry and Biotechnology, 2006, 135, 219-228.	1.4	69
113	Biological Quality of Potting Media Based on MSW Composts: A Comparative Study. Compost Science and Utilization, 2006, 14, 296-302.	1.2	11
114	Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. Journal of the Science of Food and Agriculture, 2005, 85, 466-472.	1.7	57
115	Optimization of d-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiology, 2004, 21, 143-148.	2.1	69
116	Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology, 2004, 97, 93-98.	2.1	85
117	Production of fermentable media from vine-trimming wastes and bioconversion into lactic acid byLactobacillus pentosus. Journal of the Science of Food and Agriculture, 2004, 84, 2105-2112.	1.7	78
118	Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme and Microbial Technology, 2004, 34, 627-634.	1.6	60
119	Formulation of Low-Cost Fermentative Media for Lactic Acid Production with Lactobacillus rhamnosus Using Vinification Lees as Nutrients. Journal of Agricultural and Food Chemistry, 2004, 52, 801-808.	2.4	50
120	Evaluation of Vinification Lees as a General Medium forLactobacillusStrains. Journal of Agricultural and Food Chemistry, 2004, 52, 5233-5239.	2.4	39
121	Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 2003, 25, 1161-1164.	1.1	79
122	Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess and Biosystems Engineering, 2003, 25, 357-363.	1.7	55
123	Optimization of Lactic Acid Production by Lactobacillus delbrueckii through Response Surface Methodology. Journal of Food Science, 2003, 68, 1454-1458.	1.5	49
124	Alternative Media for Lactic Acid Production by Lactobacillus delbrueckii NRRL B-445. Food and Bioproducts Processing, 2003, 81, 250-256.	1.8	8
125	Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochemistry, 2001, 36, 1199-1204.	1.8	44
126	Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. Journal of Chemical Technology and Biotechnology, 2001, 76, 279-284.	1.6	56

#	Article	IF	CITATIONS
127	Lactic acid production from agriculture residues. Biotechnology Letters, 2001, 23, 179-184.	1.1	59
128	Resin Selection and Single-Step Production and Recovery of Lactic Acid from Pretreated Wood. Applied Biochemistry and Biotechnology, 2001, 95, 069-082.	1.4	16
129	Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Journal of Bioscience and Bioengineering, 2001, 92, 518-523.	1.1	73
130	Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Journal of Bioscience and Bioengineering, 2001, 92, 518-23.	1.1	14
131	Multi-step feeding systems for lactic acid production by simultaneous saccharification and fermentation of processed wood. Bioprocess and Biosystems Engineering, 2000, 22, 0175-0180.	1.7	31
132	Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochemistry, 1999, 35, 33-41.	1.8	71
133	Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid: A kinetic study. Journal of Bioscience and Bioengineering, 1999, 87, 787-792.	1.1	31
134	Production of lactic acid from lignocellulose in a single stage of hydrolysis and fermentation. Food Biotechnology, 1997, 11, 45-58.	0.6	39