
Jamal El Haskouri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials, 1999, 11, 379-381.	21.0	241
2	Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2000, 2, 405-420.	3.2	208
3	Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, 2002, , 330-331.	4.1	152
4	A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Advanced Materials, 2002, 14, 966-969.	21.0	129
5	A Mesoporous 3D Hybrid Material with Dual Functionality for Hg ²⁺ Detection and Adsorption. Chemistry - A European Journal, 2008, 14, 8267-8278.	3.3	123
6	Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sciences, 2000, 2, 513-518.	3.2	97
7	A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41Electronic supplementary information (ESI) available: IR spectra, SEM images, X-ray diffraction patterns and TG/TD analysis. See http://www.rsc.org/suppdata/cc/b1/b111128k/. Chemical Communications. 2002 562-563.	4.1	80
8	S+I-Ionic Formation Mechanism to New Mesoporous Aluminum Phosphonates and Diphosphonates. Chemistry of Materials, 2004, 16, 4359-4372.	6.7	73
9	Ordered Mesoporous Silicon Oxynitrides. Advanced Materials, 2001, 13, 192-195.	21.0	66
10	Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes. Inorganic Chemistry, 2008, 47, 8267-8277.	4.0	63
11	A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Advanced Materials, 2002, 14, 966-969.	21.0	63
12	Atrane Precursors in the One-Pot Surfactant-Assisted Synthesis of High Zirconium Content Porous Silicas. Chemistry of Materials, 2002, 14, 5015-5022.	6.7	58
13	Interface Charge Density Matching as Driving Force for New Mesostructured Oxovanadium Phosphates with Hexagonal Structure, [CTA]xVOPO4·zH2O. Chemistry of Materials, 1999, 11, 1446-1454.	6.7	55
14	High Cobalt Content Mesoporous Silicas. Chemistry of Materials, 2004, 16, 2805-2813.	6.7	55
15	The First Pure Mesoporous Aluminium Phosphonates and Diphosphonatesâ^' New Hybrid Porous Materials. European Journal of Inorganic Chemistry, 2004, 2004, 1804-1807.	2.0	53
16	Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 2012, 187, 391-400.	12.7	44
17	Very high titanium content mesoporous silicas. Chemical Communications, 2001, , 309-310.	4.1	43
18	Hierarchical Porous Nanosized Organosilicas. Chemistry of Materials, 2002, 14, 4502-4504.	6.7	42

2

#	Article	IF	CITATIONS
19	Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta, 2018, 189, 560-567.	5.5	39
20	Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Chemical Communications, 2009, , 2694.	4.1	36
21	Surfactant-Assisted Synthesis of the SBA-8 Mesoporous Silica by Using Nonrigid Commercial Alkyltrimethyl Ammonium Surfactants. Chemistry of Materials, 2002, 14, 2637-2643.	6.7	35
22	Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates. Chemical Communications, 1999, , 333-334.	4.1	30
23	Towards the Loewenstein limit (Si/Al=1) in thermally stable mesoporous aluminosilicates. Chemical Communications, 1999, , 1679-1680.	4.1	29
24	A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. Journal of Catalysis, 2018, 367, 283-295.	6.2	29
25	Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation. Optik, 2018, 158, 1139-1146.	2.9	28
26	Improving epoxide production using Ti-UVM-7 porous nanosized catalysts. New Journal of Chemistry, 2002, 26, 1093-1095.	2.8	26
27	Mesosynthesis of ZnO–SiO ₂ porous nanocomposites with low-defect ZnO nanometric domains. Nanotechnology, 2008, 19, 225603.	2.6	25
28	Nanosized Mesoporous Silica Coatings on Ceramic Foams:Â New Hierarchical Rigid Monoliths. Chemistry of Materials, 2007, 19, 1082-1088.	6.7	24
29	Direct oxidation of isobutane to methacrolein over V-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 43-47.	4.4	23
30	Interconnected mesopores and high accessibility in UVM-7-like silicas. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	23
31	Ordered mesoporous materials: composition and topology control through chemistry. Solid State Sciences, 2001, 3, 1157-1163.	0.7	22
32	Oxidative dehydrogenation of isobutane over Co-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 127-130.	4.4	22
33	New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. Journal of Catalysis, 2007, 251, 388-399.	6.2	22
34	Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material. Electrochimica Acta, 2013, 111, 567-574.	5.2	21
35	New multicomponent catalysts for the selective aerobic oxidative condensation of benzylamine to N-benzylidenebenzylamine. Catalysis Science and Technology, 2014, 4, 4340-4355.	4.1	21
36	Optical properties of exciton confinement in spherical ZnO quantum dots embedded in matrix. Superlattices and Microstructures, 2009, 46, 907-916.	3.1	20

#	Article	IF	CITATIONS
37	Phosphorylated micro- <i>vs.</i> nano-cellulose: a comparative study on their surface functionalisation, growth of titanium-oxo-phosphate clusters and removal of chemical pollutants. New Journal of Chemistry, 2019, 43, 15555-15562.	2.8	20
38	Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochimica Acta, 2019, 186, 792.	5.0	20
39	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19
40	In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochimica Acta, 2020, 187, 301.	5.0	18
41	ZnO nanoparticles embedded in UVM-7-like mesoporous silica materials: Synthesis and characterization. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 25-31.	2.7	17
42	Design, characterization and comparison of materials based on β and γ cyclodextrin covalently connected to microporous silica for environmental analysis. Journal of Chromatography A, 2018, 1563, 10-19.	3.7	17
43	Synthesis of a New Mesostructured Lamellar Oxovanadium Phosphate Assembled through an S+X-IO Mechanism. Inorganic Chemistry, 1999, 38, 4243-4248.	4.0	13
44	Mesoporous iron phosphate/phosphonate hybrid materials. Microporous and Mesoporous Materials, 2014, 187, 14-22.	4.4	13
45	Synthesis, characterization and catalytic behavior of SnTf/MCM-41 and SnTf/UVM-7 as new green catalysts for etherification reactions. Journal of Materials Science, 2009, 44, 6693-6700.	3.7	12
46	The Li Ni0.2Mn0.2Co0.6O2 electrode materials: A structural and magnetic study. Materials Research Bulletin, 2012, 47, 1004-1009.	5.2	12
47	Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Analytical and Bioanalytical Chemistry, 2018, 410, 4847-4854.	3.7	12
48	Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34.	5.4	12
49	Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples. Journal of Chromatography A, 2022, 1662, 462729.	3.7	12
50	Combination of silica nanoparticles with hydroxyapatite reinforces poly (<scp>l</scp> -lactide acid) scaffolds without loss of bioactivity. Journal of Bioactive and Compatible Polymers, 2014, 29, 15-31.	2.1	11
51	Supramolecular self-assembling in mesostructured materials through charge tuning in the inorganic phase. Chemical Communications, 1998, , 1883-1884.	4.1	10
52	Enhancing extraction performance of organophosphorus flame retardants in water samples using titanium hierarchical porous silica materials as sorbents. Journal of Chromatography A, 2021, 1639, 461938.	3.7	10
53	One-Pot Synthesis of Superparamagnetic CoO-MCM-41 Nanocomposites with Uniform and Highly Dispersed Magnetic Nanoclusters. European Journal of Inorganic Chemistry, 2004, 2004, 1799-1803.	2.0	9
54	Efficient Sc triflate mesoporous-based catalysts for the synthesis of 4,4′-methylenedianiline from aniline and 4-aminobenzylalcohol. Journal of Catalysis, 2012, 287, 76-85.	6.2	9

#	Article	IF	CITATIONS
55	Highly Active Hydrogenation Catalysts Based on Pd Nanoparticles Dispersed along Hierarchical Porous Silica Covered with Polydopamine as Interfacial Glue. Catalysts, 2020, 10, 449.	3.5	9
56	Ni/Zn Layered Double Hydroxide (LDH) Micro/Nanosystems and Their Azorubine Adsorption Performance. Applied Sciences (Switzerland), 2021, 11, 8899.	2.5	9
57	Spectroscopic characterization and binding interaction of heavy metal onto the surface receptor of the azobenzene: DFT and experimental approach. Journal of Molecular Structure, 2021, 1244, 130962.	3.6	9
58	Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals. Topics in Catalysis, 2009, 52, 571-578.	2.8	8
59	Lowâ€Cost Synthesis of Bimodal Mesoporous Silicaâ€Based Materials by Pseudomorphic Transformation. ChemPlusChem, 2015, 80, 1014-1028.	2.8	8
60	Precatalyst or dosing-device? The [Pd2{μ-(C6H4) PPh2}2{μ-O2C(C6H5)}2] complex anchored on a carboxypolystyrene polymer as an effective supplier of palladium catalytically active nanoparticles for the Suzuki-Miyaura reaction. Journal of Catalysis, 2020, 381, 26-37.	6.2	8
61	Phosphorylation triggered growth of metal phosphate on halloysite and sepiolite nanoparticles: preparation, entrapment in chitosan hydrogels and application as recyclable scavengers. New Journal of Chemistry, 2020, 44, 14136-14144.	2.8	8
62	Optical properties of GaSe, characterization and simulation. Materials Today: Proceedings, 2021, 37, 3789-3792.	1.8	8
63	Mesoporous aluminum phosphite. Journal of Solid State Chemistry, 2009, 182, 2122-2129.	2.9	7
64	Synthesis, characterization and catalytic behavior of AlTf/UVM-7 as new green catalysts for the glycols etherification reactions. Applied Catalysis A: General, 2010, 372, 58-66.	4.3	7
65	AlTf-UVM-7—Highly active catalysts for the synthesis of long chain symmetrical ethers and non-ionic surfactant structures. Chemical Engineering Journal, 2010, 161, 363-370.	12.7	7
66	Energy of excitons and acceptor–exciton complexes to explain the origin of ultraviolet photoluminescence in ZnO quantum dots embedded in a SiO2 matrix. Solid State Communications, 2011, 151, 822-825.	1.9	7
67	Assessment of migrating endocrine-disrupting chemicals in bottled acidic juice using type UVM-7 mesoporous silica modified with cyclodextrin. Food Chemistry, 2022, 380, 132207.	8.2	7
68	Mesoporous Tin-Triflate Based Catalysts for Transesterification of Sunflower Oil. Topics in Catalysis, 2010, 53, 763-772.	2.8	6
69	Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry, 2018, 71, 776-785.	2.2	6
70	Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 2018, 5, 180873.	2.4	6
71	Ni–Zn hydroxide-based bi-phase multiscale porous nanohybrids: physico-chemical properties. Applied Nanoscience (Switzerland), 2020, 10, 2467-2477.	3.1	6
72	A β-cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. Journal of Chromatography A, 2022, 1671, 463007.	3.7	5

#	Article	IF	CITATIONS
73	Layered-Expanded Mesostructured Silicas: Generalized Synthesis and Functionalization. Nanomaterials, 2018, 8, 817.	4.1	4
74	Use of Silica Based Materials as Modulators of the Lipase Catalyzed Hydrolysis of Fats under Simulated Duodenal Conditions. Nanomaterials, 2020, 10, 1927.	4.1	4
75	New sonochemical magnetite nanoparticles functionalization approach of dithiooxamide–formaldehyde developed cellulose: From easy synthesis to recyclable 4â€nitrophenol reduction. Applied Organometallic Chemistry, 2021, 35, e6257.	3.5	4
76	Structural and optical properties of a layered Îμ-GaSe thin film under elastic deformation from flexible PET substrate. Superlattices and Microstructures, 2022, 163, 107152.	3.1	4
77	Generalized "one-pot―preparative strategy to obtain highly functionalized silica-based mesoporous spherical particles. Microporous and Mesoporous Materials, 2022, 337, 111942.	4.4	4
78	Control of the pore wall thickness and thermal stability in low-cost bimodal porous silicas. Polyhedron, 2019, 170, 544-552.	2.2	3
79	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	6.1	3
80	High content and dispersion of Gd in bimodal porous silica: T2 contrast agents under ultra-high magnetic fields. Microporous and Mesoporous Materials, 2022, 336, 111863.	4.4	3
81	A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. Journal of Food Composition and Analysis, 2022, 109, 104463.	3.9	3
82	Peptideâ€Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect, 2020, 5, 3618-3625.	1.5	2
83	A review on LiNixCo1â^'2xMnxO2 (0.1 â‰≇€¯x â‰≇€¯0.33) cathode materials for rechargeable Li-ion batteri Materials Today: Proceedings, 2021, 37, 3921-3927.	es. 1.8	2
84	Gold nanoparticles grown on a hydrophobic and texturally tunable PDMS-like framework. New Journal of Chemistry, 2021, 45, 10232-10239.	2.8	2
85	Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine. Nanomaterials, 2021, 11, 818.	4.1	2
86	Nitroarene hydrogenation catalysts based on Pd nanoparticles glued with PDA on inorganic supports: Multivariate Curve Resolution as an useful tool to compare the catalytic activity in multi-step reactions. Applied Catalysis A: General, 2021, 619, 118125.	4.3	2
87	Enhanced manganese content in Mn-MCM-41 mesoporous silicas. European Physical Journal Special Topics, 2005, 123, 65-69.	0.2	0
88	Iron-Doped Bimodal Mesoporous Silica Nanomaterials as Sorbents for Solid-Phase Extraction of Perfluoroalkyl Substances in Environmental Water Samples. Nanomaterials, 2022, 12, 1441.	4.1	0