Hidenori Tani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/665168/publications.pdf Version: 2024-02-01

ΗΙΔΕΝΟΡΙ ΤΑΝΙ

#	Article	IF	CITATIONS
1	Naked-eye detection of specific DNA sequences amplified by the polymerase chain reaction with nanocomposite beads. Analytical Biochemistry, 2021, 617, 114114.	1.1	1
2	Heterologous expression of membrane-bound alcohol dehydrogenase–encoding genes for glyceric acid production using Gluconobacter sp. CHM43 and its derivatives. Applied Microbiology and Biotechnology, 2021, 105, 6749-6758.	1.7	3
3	MicroRNA biomarkers for chemical hazard screening identified by RNA deep sequencing analysis in mouse embryonic stem cells. Toxicology and Applied Pharmacology, 2020, 392, 114929.	1.3	3
4	Development and Application of Analytical Methods for Biological Molecules Using the Fluorescent Dyes and the Nucleotide Analogs. Bunseki Kagaku, 2019, 68, 109-116.	0.1	0
5	Short-lived long noncoding RNAs as surrogate indicators for chemical stress in HepG2 cells and their degradation by nuclear RNases. Scientific Reports, 2019, 9, 20299.	1.6	18
6	ldentification of RNA biomarkers for chemical safety screening in neural cells derived from mouse embryonic stem cells using RNA deep sequencing analysis. Biochemical and Biophysical Research Communications, 2019, 512, 641-646.	1.0	1
7	Rapid monitoring of RNA degradation activity inÂvivo for mammalian cells. Journal of Bioscience and Bioengineering, 2017, 123, 523-527.	1.1	2
8	Effect of methyl p-hydroxybenzoate on the culture of mammalian cell. Drug Discoveries and Therapeutics, 2017, 11, 276-280.	0.6	0
9	Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA. Drug Discoveries and Therapeutics, 2017, 11, 20-24.	0.6	8
10	Four Aromatic Sulfates with an Inhibitory Effect against HCV NS3 Helicase from the Crinoid Alloeocomatella polycladia. Marine Drugs, 2017, 15, 117.	2.2	6
11	Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes. PLoS ONE, 2017, 12, e0181628.	1.1	12
12	ldentification of RNA biomarkers for chemical safety screening in mouse embryonic stem cells using RNA deep sequencing analysis. PLoS ONE, 2017, 12, e0182032.	1.1	6
13	Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene. Journal of Bioscience and Bioengineering, 2016, 122, 329-333.	1.1	8
14	Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase. International Journal of Molecular Sciences, 2015, 16, 18439-18453.	1.8	22
15	A Fluorescence-Based Screening Assay for Identification of Hepatitis C Virus NS3 Helicase Inhibitors and Characterization of Their Inhibitory Mechanism. Methods in Molecular Biology, 2015, 1259, 211-228.	0.4	3
16	Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs. Journal of Bioscience and Bioengineering, 2015, 119, 604-608.	1.1	19
17	Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genomics, 2015, 16, 154.	1.2	36
18	Genome-Wide Analysis of Long Noncoding RNA Turnover. Methods in Molecular Biology, 2015, 1262, 305-320.	0.4	22

HIDENORI TANI

#	Article	IF	CITATIONS
19	Long Non-Coding RNAs as Surrogate Indicators for Chemical Stress Responses in Human-Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e106282.	1.1	70
20	PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase. Molecules, 2014, 19, 4006-4020.	1.7	7
21	Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge. Marine Drugs, 2014, 12, 462-476.	2.2	14
22	BRIC-seq: A genome-wide approach for determining RNA stability in mammalian cells. Methods, 2014, 67, 55-63.	1.9	64
23	Cholesterol sulfate as a potential inhibitor of hepatitis C virus NS3 helicase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 223-229.	2.5	14
24	Psammaplin A inhibits hepatitis C virus NS3 helicase. Journal of Natural Medicines, 2013, 67, 765-772.	1.1	17
25	Identification of short-lived long non-coding RNAs as surrogate indicators for chemical stress response. Biochemical and Biophysical Research Communications, 2013, 439, 547-551.	1.0	61
26	The RNA Degradation Pathway Regulates the Function of GAS5 a Non-Coding RNA in Mammalian Cells. PLoS ONE, 2013, 8, e55684.	1.1	149
27	Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biology, 2012, 9, 1370-1379.	1.5	153
28	Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia. Marine Drugs, 2012, 10, 744-761.	2.2	15
29	Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Research, 2012, 22, 947-956.	2.4	364
30	Genome-wide technology for determining RNA stability in mammalian cells. RNA Biology, 2012, 9, 1233-1238.	1.5	108
31	Identification and Characterization of Novel Genotoxic Stress-Inducible Nuclear Long Noncoding RNAs in Mammalian Cells. PLoS ONE, 2012, 7, e34949.	1.1	60
32	Inhibition of Hepatitis C Virus NS3 Helicase by Manoalide. Journal of Natural Products, 2012, 75, 650-654.	1.5	32
33	Inhibition of Both Protease and Helicase Activities of Hepatitis C Virus NS3 by an Ethyl Acetate Extract of Marine Sponge Amphimedon sp. PLoS ONE, 2012, 7, e48685.	1.1	7
34	Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. using alternately binding probe competitive polymerase chain reaction. Molecular and Cellular Probes, 2010, 24, 131-137.	0.9	6
35	Real-time monitoring of RNA helicase activity using fluorescence resonance energy transfer in vitro. Biochemical and Biophysical Research Communications, 2010, 393, 131-136.	1.0	33
36	Real-time reverse transcription loop-mediated isothermal amplification for rapid and simple quantification of WT1 mRNA. Clinical Biochemistry, 2009, 42, 515-520.	0.8	10

HIDENORI TANI

#	Article	IF	CITATIONS
37	High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon. Biochemical and Biophysical Research Communications, 2009, 379, 1054-1059.	1.0	19
38	Universal Quenching Probe System: Flexible, Specific, and Cost-Effective Real-Time Polymerase Chain Reaction Method. Analytical Chemistry, 2009, 81, 5678-5685.	3.2	33
39	Estimation of single-nucleotide polymorphism allele frequency by alternately binding probe competitive polymerase chain reaction. Analytica Chimica Acta, 2008, 608, 211-216.	2.6	8
40	Quantitative Method for Specific Nucleic Acid Sequences Using Competitive Polymerase Chain Reaction with an Alternately Binding Probe. Analytical Chemistry, 2007, 79, 974-979.	3.2	25
41	Technique for Quantitative Detection of Specific DNA Sequences Using Alternately Binding Quenching Probe Competitive Assay Combined with Loop-Mediated Isothermal Amplification. Analytical Chemistry, 2007, 79, 5608-5613.	3.2	56
42	Calibration-curve-free quantitative PCR: A quantitative method for specific nucleic acid sequences without using calibration curves. Analytical Biochemistry, 2007, 369, 105-111.	1.1	5
43	Quantification of Genetically Modified Soybean by Quenching Probe Polymerase Chain Reaction. Journal of Agricultural and Food Chemistry, 2005, 53, 2535-2540.	2.4	15