

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Self-Assembly Pathways of Peptoid Helices and Sheets. Biomacromolecules, 2022, 23, 992-1008.	5.4	19
2	Viscoelastic necking dynamics between attractive microgels. Journal of Colloid and Interface Science, 2022, 618, 283-289.	9.4	6
3	Elastocapillary interactions of thermoresponsive microgels across the volume phase transition temperatures. Journal of Colloid and Interface Science, 2021, 584, 275-280.	9.4	9
4	Self-assembly in biobased nanocomposites for multifunctionality and improved performance. Nanoscale Advances, 2021, 3, 4321-4348.	4.6	11
5	Biobased superhydrophobic coating enabled by nanoparticle assembly. Nanoscale Advances, 2021, 3, 4037-4047.	4.6	2
6	Numerical and theoretical modeling of droplet impact on spherical surfaces. Physics of Fluids, 2021, 33, .	4.0	32
7	Hierarchical assemblies of polypeptoids for rational design of advanced functional nanomaterials. Biopolymers, 2021, 112, e23469.	2.4	6
8	Dependency of active pressure and equation of state on stiffness of wall. Scientific Reports, 2021, 11, 22204.	3.3	4
9	Homogeneous gelation leads to nanowire forests in the transition between electrospray and electrospinning. Materials Horizons, 2020, 7, 2643-2650.	12.2	17
10	MARTINI-Compatible Coarse-Grained Model for the Mesoscale Simulation of Peptoids. Journal of Physical Chemistry B, 2020, 124, 7745-7764.	2.6	28
11	Nanoparticle assembly modulated by polymer chain conformation in composite materials. Nanoscale, 2020, 12, 14560-14572.	5.6	23
12	Self-stratification of amphiphilic Janus particles at coating surfaces. Materials Horizons, 2020, 7, 2047-2055.	12.2	28
13	Rapid <i>Escherichia coli</i> Trapping and Retrieval from Bodily Fluids via a Three-Dimensional Bead-Stacked Nanodevice. ACS Applied Materials & Interfaces, 2020, 12, 7888-7896.	8.0	27
14	Janus Nanoparticles Enable Entropy-Driven Mixing of Bicomponent Hydrogels. Langmuir, 2019, 35, 14840-14848.	3.5	10
15	Morphology evolution of Janus dumbbell nanoparticles in seeded emulsion polymerization. Journal of Colloid and Interface Science, 2019, 543, 34-42.	9.4	39
16	Controlling the stability of Pickering emulsions by pH-responsive nanoparticles. Soft Matter, 2019, 15, 3291-3300.	2.7	14
17	Full Dissolution of the Whole Lithium Sulfide Family (Li ₂ S ₈ to) Tj ETQq1 1 0.784314 r Chemie, 2019, 131, 5613-5617.	gBT /Overl 2.0	ock 10 Tf 50 11
18	Full Dissolution of the Whole Lithium Sulfide Family (Li ₂ S ₈ to) Tj ETQq0 0 0 rgBT /Ove Chemie - International Edition, 2019, 58, 5557-5561.	erlock 10 T 13.8	f 50 67 Td (Li 93

Xin Yong

#	Article	IF	CITATIONS
19	Harnessing complex fluid interfaces to control colloidal assembly and deposition. Journal of Colloid and Interface Science, 2019, 540, 602-611.	9.4	9
20	Molecular conformation affects the interaction of the Pseudomonas quinolone signal with the bacterial outer membrane. Journal of Biological Chemistry, 2019, 294, 1089-1094.	3.4	19
21	Structure and Dynamics of Stimuli-Responsive Nanoparticle Monolayers at Fluid Interfaces. Langmuir, 2018, 34, 5581-5591.	3.5	12
22	Dissipative particle dynamics modeling of hydrogel swelling by osmotic ensemble method. Journal of Chemical Physics, 2018, 149, 094904.	3.0	22
23	Molecular dynamics modeling of <i>Pseudomonas aeruginosa</i> outer membranes. Physical Chemistry Chemical Physics, 2018, 20, 23635-23648.	2.8	27
24	Interfacial Targeting of Sessile Droplets Using Electrospray. Langmuir, 2018, 34, 7445-7454.	3.5	9
25	Drying mediated orientation and assembly structure of amphiphilic Janus particles. Soft Matter, 2018, 14, 6793-6798.	2.7	22
26	Axisymmetric lattice Boltzmann simulation of droplet impact on solid surfaces. Physical Review E, 2018, 98, 013102.	2.1	16
27	Nanoparticle motion on the surface of drying droplets. Physical Review Fluids, 2018, 3, .	2.5	17
28	Interfacial adsorption of pH-responsive polymers and nanoparticles. Soft Matter, 2017, 13, 5137-5149.	2.7	17
29	Modeling Evaporation and Particle Assembly in Colloidal Droplets. Langmuir, 2017, 33, 5734-5744.	3.5	28
30	Structure of Electrospray Printed Deposits for Short Spray Times. , 2017, , .		0
31	Structure of Electrospray Printed Deposits for Short Spray Times. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.7	5
32	Electrospray deposit structure of nanoparticle suspensions. Journal of Electrostatics, 2017, 90, 67-73.	1.9	26
33	Hydrodynamic Interactions and Entanglements of Polymer Solutions in Many-Body Dissipative Particle Dynamics. Polymers, 2016, 8, 426.	4.5	19
34	Nanoparticle-mediated evaporation at liquid–vapor interfaces. Extreme Mechanics Letters, 2016, 7, 90-103.	4.1	20
35	Stackable, Covalently Fused Gels: Repair and Composite Formation. Macromolecules, 2015, 48, 1169-1178.	4.8	30
36	Designing Composite Coatings That Provide a Dual Defense against Fouling. Langmuir, 2015, 31, 7524-7532.	3.5	16

Xin Yong

#	Article	IF	CITATIONS
37	Modeling free radical polymerization using dissipative particle dynamics. Polymer, 2015, 72, 217-225.	3.8	48
38	Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil–Water Interfaces. Langmuir, 2015, 31, 11458-11469.	3.5	39
39	Designing a gel–fiber composite to extract nanoparticles from solution. Soft Matter, 2015, 11, 8692-8700.	2.7	12
40	Designing biomimetic reactive polymer gels. Materials Today, 2014, 17, 486-493.	14.2	7
41	Cooperative, Reversible Selfâ€Assembly of Covalently Preâ€Linked Proteins into Giant Fibrous Structures. Angewandte Chemie - International Edition, 2014, 53, 8050-8055.	13.8	32
42	Toward Generating Low-Friction Nanoengineered Surfaces with Liquid–Vapor Interfaces. Langmuir, 2013, 29, 12623-12627.	3.5	7
43	Harnessing Interfacially-Active Nanorods to Regenerate Severed Polymer Gels. Nano Letters, 2013, 13, 6269-6274.	9.1	75
44	Slip in nanoscale shear flow: mechanisms of interfacial friction. Microfluidics and Nanofluidics, 2013, 14, 299-308.	2.2	36
45	Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Journal of Chemical Physics, 2013, 138, 084503.	3.0	72
46	Harnessing Fluid-Driven Vesicles To Pick Up and Drop Off Janus Particles. ACS Nano, 2013, 7, 1224-1238.	14.6	49
47	Self-Healing Vesicles Deposit Lipid-Coated Janus Particles into Nanoscopic Trenches. Langmuir, 2013, 29, 16066-16074.	3.5	20
48	Nanoscale simple-fluid behavior under steady shear. Physical Review E, 2012, 85, 051202.	2.1	9
49	Examining different NEMD methods in simulating nanoscale fluid at high shear rates. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2010, 224, 19-29.	0.1	2
50	Investigating liquid-solid interfacial phenomena in a Couette flow at nanoscale. Physical Review E, 2010, 82, 056313.	2.1	18
51	Nanoscale Wetting on Groove-Patterned Surfaces. Langmuir, 2009, 25, 5045-5053.	3.5	101