
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CHildhood Allergy and tolerance: Biomarkers and Predictors (CHAMP) and quality of life. Pediatric Allergy and Immunology, 2022, 33, .	1.1	2
2	Inverse associations between food diversity in the second year of life and allergic diseases. Annals of Allergy, Asthma and Immunology, 2022, 128, 39-45.	0.5	13
3	The rising of old foes: impact of lockdown periods on "non-SARS-CoV-2―viral respiratory and gastrointestinal infections. Infection, 2022, 50, 519-524.	2.3	26
4	Secretory protein betaâ€lactoglobulin in cattle stable dust may contribute to the allergyâ€protective farm effect. Clinical and Translational Allergy, 2022, 12, e12125.	1.4	19
5	From Observing Children in Traditional Upbringing to Concepts of Health. , 2022, , 1-26.		1
6	Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1545-1553.e2.	2.0	28
7	Bifidobacterium Species Colonization in Infancy: A Global Cross-Sectional Comparison by Population History of Breastfeeding. Nutrients, 2022, 14, 1423.	1.7	17
8	Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 641-650.	2.5	13
9	Early priming of asthma and respiratory allergies: Future aspects of prevention. Pediatric Allergy and Immunology, 2022, 33, e13773.	1.1	3
10	Collagen Neoepitope Biomarkers Are Increased in Allergic Broncho-Pulmonary Aspergillosis in Cystic Fibrosis. , 2022, , .		0
11	lgA ⁺ memory B-cells are significantly increased in patients with asthma and small airway dysfunction. European Respiratory Journal, 2022, 60, 2102130.	3.1	8
12	Multiâ€ancestry genomeâ€wide association study of asthma exacerbations. Pediatric Allergy and Immunology, 2022, 33, .	1.1	14
13	NetCoMi: network construction and comparison for microbiome data in R. Briefings in Bioinformatics, 2021, 22, .	3.2	222
14	Breath volatile organic compounds and inflammatory markers in adult asthma patients: negative results from the ALLIANCE cohort. European Respiratory Journal, 2021, 57, 2002127.	3.1	8
15	Cytokine levels in children and adults with wheezing and asthma show specific patterns of variability over time. Clinical and Experimental Immunology, 2021, 204, 152-164.	1.1	5
16	The "Hygiene Hypothesis―and the Lessons Learnt From Farm Studies. Frontiers in Immunology, 2021, 12, 635522.	2.2	21
17	Persistent Uncontrolled Asthma: Long-Term Impact on Physical Activity and Body Composition. Journal of Asthma and Allergy, 2021, Volume 14, 229-240.	1.5	14
18	Medical care and treatment of children with asthmatic or wheezing health outcomes and urban–rural differences in Bavaria – a cross-sectional study. Journal of Asthma, 2021, , 1-10.	0.9	0

#	Article	IF	CITATIONS
19	Allergen extract―and componentâ€based diagnostics in children of the ALLIANCE asthma cohort. Clinical and Experimental Allergy, 2021, 51, 1331-1345.	1.4	6
20	Raised sputum extracellular DNA confers lung function impairment and poor symptom control in an exacerbation-susceptible phenotype of neutrophilic asthma. Respiratory Research, 2021, 22, 167.	1.4	10
21	Identification of OCA2 as a novel locus for the coâ€morbidity of asthmaâ€plusâ€eczema. Clinical and Experimental Allergy, 2021, , .	1.4	3
22	COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy. European Respiratory Journal, 2021, 58, 2003969.	3.1	15
23	The Relevance of Small Airway Dysfunction in Asthma with Nocturnal Symptoms. Journal of Asthma and Allergy, 2021, Volume 14, 897-905.	1.5	17
24	Protection against allergies: Microbes, immunity, and the farming effect. European Journal of Immunology, 2021, 51, 2387-2398.	1.6	24
25	Small Airway Dysfunction Links Asthma Severity with Physical Activity and Symptom Control. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3359-3368.e1.	2.0	39
26	Impact of imposed social isolation and use of face masks on asthma course and mental health in pediatric and adult patients with recurrent wheeze and asthma. Allergy, Asthma and Clinical Immunology, 2021, 17, 93.	0.9	3
27	Allergic diseases in infancy II–oral tolerance and its failure. World Allergy Organization Journal, 2021, 14, 100586.	1.6	3
28	Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organization Journal, 2021, 14, 100591.	1.6	15
29	Small airway dysfunction as predictor and marker for clinical response to biological therapy in severe eosinophilic asthma: a longitudinal observational study. Respiratory Research, 2020, 21, 278.	1.4	25
30	Nickel allergy is associated with wheezing and asthma in a cohort of young German adults: results from the SOLAR study. ERJ Open Research, 2020, 6, 00178-2019.	1.1	8
31	Prevention Is the Best Remedy: What Can We Do to Stop Allergic Disease?. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 890-891.	2.0	3
32	Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet, The, 2020, 396, 854-866.	6.3	139
33	Effect of Farming on Asthma. Acta Medica Academica, 2020, 49, 144-155.	0.3	13
34	Genomeâ€wide interaction study of earlyâ€life smoking exposure on timeâ€ŧoâ€∎sthma onset in childhood. Clinical and Experimental Allergy, 2019, 49, 1342-1351.	1.4	9
35	Indoor bacterial microbiota and development of asthma by 10.5Âyears of age. Journal of Allergy and Clinical Immunology, 2019, 144, 1402-1410.	1.5	50
36	Parents know it best: Prediction of asthma and lung function by parental perception of early wheezing episodes. Pediatric Allergy and Immunology, 2019, 30, 795-802.	1.1	7

#	Article	IF	CITATIONS
37	T-cell phenotypes are associated with serum IgE levels in Amish and Hutterite children. Journal of Allergy and Clinical Immunology, 2019, 144, 1391-1401.e10.	1.5	23
38	Work-related stress and incident asthma and rhinitis: results from the SOLAR study. International Archives of Occupational and Environmental Health, 2019, 92, 673-681.	1.1	3
39	Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 2019, 25, 1089-1095.	15.2	219
40	Population Duration of Breastfeeding and Prevalence of Bifidobacterium Longum Subspecies Infantis (OR01-01-19). Current Developments in Nutrition, 2019, 3, nzz040.OR01-01-19.	0.1	1
41	Development of atopic sensitization in Finnish and Estonian children: AÂlatent class analysis in a multicenter cohort. Journal of Allergy and Clinical Immunology, 2019, 143, 1904-1913.e9.	1.5	10
42	The protective effect of cheese consumption at 18Âmonths on allergic diseases in the first 6Âyears. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 788-798.	2.7	31
43	Childhood origins of COPD. Lancet Respiratory Medicine,the, 2018, 6, 482-483.	5.2	8
44	Farm dust reduces viral load in human bronchial epithelial cells by increasing barrier function and antiviral responses. Journal of Allergy and Clinical Immunology, 2018, 141, 1949-1952.e8.	1.5	15
45	An approach to the asthmaâ€protective farm effect by geocoding: Good farms and better farms. Pediatric Allergy and Immunology, 2018, 29, 275-282.	1.1	42
46	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nature Genetics, 2018, 50, 42-53.	9.4	426
47	Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers' children against airway inflammation and colitis. Journal of Allergy and Clinical Immunology, 2018, 141, 382-390.e7.	1.5	44
48	<i>IRFâ€1</i> SNPs influence the risk for childhood allergic asthma: A critical role for proâ€inflammatory immune regulation. Pediatric Allergy and Immunology, 2018, 29, 34-41.	1.1	11
49	Functional phenotypes determined by fluctuation-based clustering of lung function measurements in healthy and asthmatic cohort participants. Thorax, 2018, 73, 107-115.	2.7	15
50	After asthma: redefining airways diseases. Lancet, The, 2018, 391, 350-400.	6.3	744
51	Pregnancy and perinatal conditions and atopic disease prevalence in childhood and adulthood. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1064-1074.	2.7	36
52	Intimate Crosstalk in Lower Airways at the Beginning of Life. Cell Host and Microbe, 2018, 24, 758-759.	5.1	2
53	Inception of early-life allergen–induced airway hyperresponsiveness is reliant on IL-13 ⁺ CD4 ⁺ T cells. Science Immunology, 2018, 3, .	5.6	50
54	Protective effects of breastfeeding on respiratory symptoms in infants with 17q21 asthma risk variants. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2388-2392.	2.7	17

#	Article	IF	CITATIONS
55	Ca ²⁺ and innate immune pathways are activated and differentially expressed in childhood asthma phenotypes. Pediatric Allergy and Immunology, 2018, 29, 823-833.	1.1	12
56	The all age asthma cohort (ALLIANCE) - from early beginnings to chronic disease: a longitudinal cohort study. BMC Pulmonary Medicine, 2018, 18, 140.	0.8	44
57	Do farm-grown lungs breathe better?. Thorax, 2017, 72, 202-203.	2.7	2
58	The shape of the microbiome in early life. Nature Medicine, 2017, 23, 274-275.	15.2	13
59	Phenotypes of Atopic Dermatitis Depending on the Timing of Onset and Progression in Childhood. JAMA Pediatrics, 2017, 171, 655.	3.3	197
60	Exploring the associations between parent-reported biological indoor environment and airway-related symptoms and allergic diseases in children. International Journal of Hygiene and Environmental Health, 2017, 220, 1333-1339.	2.1	8
61	Asthmatic farm children show increased CD3+CD8low T-cells compared to non-asthmatic farm children. Clinical Immunology, 2017, 183, 285-292.	1.4	3
62	What is precision medicine?. European Respiratory Journal, 2017, 50, 1700391.	3.1	310
63	Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts. Journal of Allergy and Clinical Immunology, 2017, 139, 1935-1945.e12.	1.5	76
64	A switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 604-615.	2.7	46
65	Bacterial microbiota of the upper respiratory tract and childhood asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 826-834.e13.	1.5	165
66	Environmental and mucosal microbiota and their role in childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 109-119.	2.7	94
67	Asthma transition from childhood into adulthood. Lancet Respiratory Medicine, the, 2017, 5, 224-234.	5.2	165
68	Chronic Stress in Young German Adults: Who Is Affected? A Prospective Cohort Study. International Journal of Environmental Research and Public Health, 2017, 14, 1325.	1.2	6
69	Comparison of Oropharyngeal Microbiota from Children with Asthma and Cystic Fibrosis. Mediators of Inflammation, 2017, 2017, 1-10.	1.4	32
70	<i><scp>IL</scp>â€33</i> polymorphisms are associated with increased risk of hay fever and reduced regulatory T cells in a birth cohort. Pediatric Allergy and Immunology, 2016, 27, 687-695.	1.1	31
71	lgG1 Fc N-glycan galactosylation as a biomarker for immune activation. Scientific Reports, 2016, 6, 28207.	1.6	71
72	Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Current Opinion in Immunology, 2016, 42, 41-47.	2.4	25

#	Article	IF	CITATIONS
73	Exposure to a farm environment is associated with <scp>T</scp> helper 1 and regulatory cytokines at age 4.5Âyears. Clinical and Experimental Allergy, 2016, 46, 71-77.	1.4	27
74	Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. New England Journal of Medicine, 2016, 375, 411-421.	13.9	745
75	Circulating Dendritic Cells, Farm Exposure and Asthma at Early Age. Scandinavian Journal of Immunology, 2016, 83, 18-25.	1.3	17
76	Identification of a new locus at 16q12 associated with time to asthma onset. Journal of Allergy and Clinical Immunology, 2016, 138, 1071-1080.	1.5	25
77	Inconclusive Results of Randomized Trials of Prenatal Vitamin D for Asthma Prevention in Offspring. JAMA - Journal of the American Medical Association, 2016, 315, 347.	3.8	21
78	ω-3 fatty acids contribute to the asthma-protective effect of unprocessed cow's milk. Journal of Allergy and Clinical Immunology, 2016, 137, 1699-1706.e13.	1.5	90
79	The microbial environment and its influence on asthma prevention in early life. Journal of Allergy and Clinical Immunology, 2016, 137, 680-689.	1.5	162
80	microRNA in native and processed cow's milk and its implication for the farm milk effect on asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 1893-1895.e13.	1.5	69
81	No further increase in the parent reported prevalence of allergies in Bavarian preschool children: Results from three cross-sectional studies. International Journal of Hygiene and Environmental Health, 2016, 219, 343-348.	2.1	12
82	Microbes and asthma: Opportunities for intervention. Journal of Allergy and Clinical Immunology, 2016, 137, 690-697.	1.5	68
83	Farm exposures are associated with lower percentage of circulating myeloid dendritic cell subtype 2 at age 6. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1278-1287.	2.7	23
84	Consumption of unprocessed cow's milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology, 2015, 135, 56-62.e2.	1.5	96
85	Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science, 2015, 349, 1106-1110.	6.0	483
86	Identification of novel immune phenotypes for allergic andÂnonallergic childhood asthma. Journal of Allergy and Clinical Immunology, 2015, 135, 81-91.	1.5	132
87	Predictors of work-related sensitisation, allergic rhinitis and asthma in early work life. European Respiratory Journal, 2014, 44, 657-665.	3.1	9
88	Regulation of TH17 markers early in life through maternal farm exposure. Journal of Allergy and Clinical Immunology, 2014, 133, 864-871.	1.5	30
89	Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. Journal of Allergy and Clinical Immunology, 2014, 133, 551-559.e10.	1.5	176
90	Increased food diversity in the first year of life is inversely associated with allergic diseases. Journal of Allergy and Clinical Immunology, 2014, 133, 1056-1064.e7.	1.5	237

#	Article	IF	CITATIONS
91	Body mass index change and atopic diseases are not always associated in children and adolescents. Annals of Allergy, Asthma and Immunology, 2014, 113, 440-444.e1.	0.5	12
92	Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. Journal of Allergy and Clinical Immunology, 2014, 133, 885-888.	1.5	47
93	Perinatal influences on the development of asthma and atopy in childhood. Annals of Allergy, Asthma and Immunology, 2014, 112, 132-139.e1.	0.5	53
94	Atopy: AÂmirror of environmental changes?. Journal of Allergy and Clinical Immunology, 2014, 133, 1354-1355.	1.5	6
95	O07 ―Phenotypes of atopic dermatitis depending on the timing of onset and the evolution in childhood. Clinical and Translational Allergy, 2014, 4, O7.	1.4	0
96	Update in Asthma 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 150-156.	2.5	11
97	Association of physical activity, asthma, and allergies: AÂcohort of farming and nonfarming children. Journal of Allergy and Clinical Immunology, 2013, 132, 743-746.e4.	1.5	6
98	Can genes forecast asthma risk?. Lancet Respiratory Medicine, the, 2013, 1, 425-426.	5.2	4
99	Prenatal and childhood infections: implications for the development and treatment of childhood asthma. Lancet Respiratory Medicine,the, 2013, 1, 743-754.	5.2	25
100	A Patient with Asthma Seeks Medical Advice in 1828, 1928, and 2012. New England Journal of Medicine, 2012, 366, 827-834.	13.9	34
101	Development of atopic dermatitis according to age of onset and association with early-life exposures. Journal of Allergy and Clinical Immunology, 2012, 130, 130-136.e5.	1.5	116
102	Amish children living in northern Indiana have a very low prevalence of allergic sensitization. Journal of Allergy and Clinical Immunology, 2012, 129, 1671-1673.	1.5	78
103	Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2011, 127, 179-185.e1.	1.5	152
104	The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology, 2011, 128, 766-773.e4.	1.5	244
105	The GABRIEL Advanced Surveys: study design, participation and evaluation of bias. Paediatric and Perinatal Epidemiology, 2011, 25, 436-447.	0.8	47
106	Can farm milk consumption prevent allergic diseases?. Clinical and Experimental Allergy, 2011, 41, 29-35.	1.4	94
107	Study on Occupational Allergy Risks (SOLAR II) in Germany: Design and methods. BMC Public Health, 2011, 11, 298.	1.2	22
108	Exposure to Environmental Microorganisms and Childhood Asthma. New England Journal of Medicine, 2011, 364, 701-709.	13.9	1,339

#	Article	IF	CITATIONS
109	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Farm lifestyles and the hygiene hypothesis. Clinical and Experimental Immunology, 2010, 160, 130-135.	1.1	69
110	Farm living: effects on childhood asthma and allergy. Nature Reviews Immunology, 2010, 10, 861-868.	10.6	608
111	Variants of <i>DENND1B</i> Associated with Asthma in Children. New England Journal of Medicine, 2010, 362, 36-44.	13.9	306
112	A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. New England Journal of Medicine, 2010, 363, 1211-1221.	13.9	1,762
113	Genetic variation in CRTh2 influences development of allergic phenotypes. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1478-1485.	2.7	17
114	Gene-environment interactions in asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 3-11.	1.5	207
115	Filaggrin mutations, atopic eczema, hay fever, and asthma in children. Journal of Allergy and Clinical Immunology, 2008, 121, 1203-1209.e1.	1.5	380
116	Cord blood allergen-specific IgE is associated with reduced IFN-γ production by cord blood cells: The Protection against Allergy—Study in Rural Environments (PASTURE) study. Journal of Allergy and Clinical Immunology, 2008, 122, 711-716.	1,5	84
117	Rhinitis as predictor of adult-onset asthma. Lancet, The, 2008, 372, 1012-1014.	6.3	6
118	Living on a Farm: Impact on Asthma Induction and Clinical Course. Immunology and Allergy Clinics of North America, 2008, 28, 631-647.	0.7	137
119	Rethinking Th2 Antibody Responses and Allergic Sensitization. Novartis Foundation Symposium, 2008, , 25-44.	1.2	4
120	Asthma and Allergies in Rural Areas of Europe. Proceedings of the American Thoracic Society, 2007, 4, 212-216.	3.5	77
121	Allergies, infections and the hygiene hypothesis – The epidemiological evidence. Immunobiology, 2007, 212, 433-439.	0.8	236
122	Not all farming environments protect against the development of asthma and wheeze in children. Journal of Allergy and Clinical Immunology, 2007, 119, 1140-1147.	1.5	252
123	Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. Journal of Allergy and Clinical Immunology, 2007, 119, 1514-1521.	1.5	247
124	Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature, 2007, 448, 470-473.	13.7	1,446
125	Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clinical and Experimental Allergy, 2007, 37, 661-670.	1.4	223
126	The PASTURE project: EU support for the improvement of knowledge about risk factors and preventive factors for atopy in Europe. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 407-413.	2.7	141

#	Article	IF	CITATIONS
127	Fatty acids in serum cholesteryl esters in relation to asthma and lung function in children. Clinical and Experimental Allergy, 2006, 36, 293-302.	1.4	36
128	Phase II of the International Study of Asthma and Allergies in Childhood (ISAAC II): rationale and methods. European Respiratory Journal, 2004, 24, 406-412.	3.1	372
129	A promoter polymorphism in the CD14 gene is associated with elevated levels of soluble CD14 but not with IgE or atopic diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2004, 59, 520-525.	2.7	88
130	Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clinical and Experimental Allergy, 2004, 34, 340-345.	1.4	109
131	Infection: friend or foe in the development of allergic disorders?. Clinical and Experimental Allergy Reviews, 2004, 4, 35-39.	0.3	2
132	Influences in allergy. Journal of Allergy and Clinical Immunology, 2004, 113, 373-379.	1.5	77
133	Environmental factors influencing the development and progression of pediatric asthma. Journal of Allergy and Clinical Immunology, 2002, 109, S525-S532.	1.5	182
134	Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet, The, 2001, 358, 1129-1133.	6.3	1,325
135	Relation of body mass index to asthma and atopy in children: the National Health and Nutrition Examination Study III. Thorax, 2001, 56, 835-838.	2.7	375
136	Paediatric origins of adult lung disease bullet 6: Paediatric origins of adult lung disease. Thorax, 2001, 56, 153-157.	2.7	78
137	Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ: British Medical Journal, 2001, 322, 390-395.	2.4	466
138	Presentation of new GINA guidelines for paediatrics. Clinical and Experimental Allergy, 2000, 30, 6-10.	1.4	54
139	Reduced risk of hay fever and asthma among children of farmers. Clinical and Experimental Allergy, 2000, 30, 187-193.	1.4	600
140	Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clinical and Experimental Allergy, 2000, 30, 1230-1234.	1.4	492
141	Statistical/Design Methods. American Journal of Respiratory and Critical Care Medicine, 2000, 162, S34-S35.	2.5	5
142	The burden of childhood asthma. Archives of Disease in Childhood, 2000, 82, 2ii-5.	1.0	61
143	International patterns of tuberculosis and the prevalence of symptoms of asthma, rhinitis, and eczema. Thorax, 2000, 55, 449-453.	2.7	173
144	Breast feeding and obesity: cross sectional study. BMJ: British Medical Journal, 1999, 319, 147-150.	2.4	688

#	Article	IF	CITATIONS
145	Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children. European Respiratory Journal, 1999, 14, 4.	3.1	191
146	Prevalence of respiratory and atopic disorders among children in the East and West of Germany five years after unification. European Respiratory Journal, 1999, 14, 862.	3.1	238
147	Air Pollution and Asthma — Fact or Artifact? A Plea for Inclusion of Objective Measures in Environmental Epidemiology. , 1998, 25, 297-298.		4
148	The rising trends in asthma and allergic disease. Clinical and Experimental Allergy, 1998, 28, 45-49.	1.4	166
149	Indoor and outdoor air pollution and childhood asthma. Pediatric Pulmonology, 1997, 23, 86-87.	1.0	3
150	Infection and pollution. Pediatric Pulmonology, 1997, 23, 74-75.	1.0	0
151	Infection and pollution. Pediatric Pulmonology, 1997, 23, 203-204.	1.0	0
152	Progression of allergy and asthma through childhood to adolescence Thorax, 1996, 51, S3-S6.	2.7	48
153	Familial aggregation of asthma in a South Bavarian population American Journal of Respiratory and Critical Care Medicine, 1996, 153, 1266-1272.	2.5	41
154	Relation of indoor heating with asthma, allergic sensitisation, and bronchial responsiveness: survey of children in South Bavaria. BMJ: British Medical Journal, 1996, 312, 1448-1450.	2.4	94
155	Air pollution and upper respiratory symptoms in children from East Germany. European Respiratory Journal, 1995, 8, 723-8.	3.1	35
156	Prevalence of asthma and atopy in two areas of West and East Germany American Journal of Respiratory and Critical Care Medicine, 1994, 149, 358-364.	2.5	815
157	Skin test reactivity and number of siblings. BMJ: British Medical Journal, 1994, 308, 692-695.	2.4	418
158	Genetic risk for asthma, allergic rhinitis, and atopic dermatitis Archives of Disease in Childhood, 1992, 67, 1018-1022.	1.0	350
159	Prevalence of asthma and allergic disorders among children in united Germany: a descriptive comparison BMJ: British Medical Journal, 1992, 305, 1395-1399.	2.4	430