Nader H Moniri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651139/publications.pdf

Version: 2024-02-01

		516215	476904
32	889	16	29
papers	citations	h-index	g-index
32	32	32	1260
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Skeletal Muscle Relaxer Cyclobenzaprine Is a Potent Non-Competitive Antagonist of Histamine H1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 202-209.	1.3	5
2	Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochemical Pharmacology, 2021, 186, 114483.	2.0	25
3	The \hat{I}^2 2-adrenergic receptor-ROS signaling axis: An overlooked component of \hat{I}^2 2AR function?. Biochemical Pharmacology, 2020, 171, 113690.	2.0	26
4	Carboxy-Terminal Phosphoregulation of the Long Splice Isoform of Free-Fatty Acid Receptor-4 Mediates Î ² -Arrestin Recruitment and Signaling to ERK1/2. Molecular Pharmacology, 2020, 97, 304-313.	1.0	8
5	Cysteine redox state regulates human \hat{l}^2 2-adrenergic receptor binding and function. Scientific Reports, 2020, 10, 2934.	1.6	6
6	Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson's disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology, 2020, 167, 107976.	2.0	21
7	Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 18, 735-749.	0.8	18
8	The adrenergic receptor antagonist carvedilol interacts with serotonin 2A receptors both in vitro and in vivo. Pharmacology Biochemistry and Behavior, 2019, 181, 37-45.	1.3	9
9	Reintroduction of quazepam. International Clinical Psychopharmacology, 2019, 34, 275-285.	0.9	3
10	The role of free-fatty acid receptor-4 (FFA4) in human cancers and cancer cell lines. Biochemical Pharmacology, 2018, 150, 170-180.	2.0	33
11	Statin-Associated Achilles Tendon Rupture and Reproducible Bilateral Tendinopathy on Repeated Exposure. Mayo Clinic Proceedings, 2018, 93, 1531-1532.	1.4	4
12	Free-fatty acid receptor-4 (FFA4) modulates ROS generation and COX-2 expression via the C-terminal \hat{I}^2 -arrestin phosphosensor in Raw 264.7 macrophages. Biochemical Pharmacology, 2017, 146, 139-150.	2.0	24
13	Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochemical Pharmacology, 2016, 110-111, 1-15.	2.0	89
14	Fish oil and flax seed oil supplemented diets increase FFAR4 expression in the rat colon. Inflammation Research, 2015, 64, 809-815.	1.6	36
15	Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C-terminal tail. Biochemical Pharmacology, 2014, 87, 650-659.	2.0	52
16	Clinical effects of once-weekly exenatide for the treatment of type 2 diabetes mellitus. American Journal of Health-System Pharmacy, 2013, 70, 1123-1131.	0.5	14
17	Evolution of Preprofessional Pharmacy Curricula. American Journal of Pharmaceutical Education, 2013, 77, 95.	0.7	13
18	Reactive oxygen species are required for β2 adrenergic receptor–β-arrestin interactions and signaling to ERK1/2. Biochemical Pharmacology, 2012, 84, 661-669.	2.0	16

#	Article	IF	CITATIONS
19	Elucidation of the phosphorylation profiles of the long and short isoforms of the omegaâ€3 fatty acid receptorâ€1 (GPR120). FASEB Journal, 2012, 26, .	0.2	0
20	Reactive Oxygen Species are required for β2 adrenergic receptor mediated βâ€arrestin signaling. FASEB Journal, 2012, 26, 665.6.	0.2	0
21	Agonist- and Hydrogen Peroxide-Mediated Oxidation of the \hat{I}^2 2 Adrenergic Receptor: Evidence of Receptor S-Sulfenation as Detected by a Modified Biotin-Switch Assay. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 914-921.	1.3	11
22	Dynamin2- and endothelial nitric oxide synthaseâ€"regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. Journal of Cell Biology, 2011, 192, 101-110.	2.3	25
23	Dynamin2- and endothelial nitric oxide synthase–regulated invasion of bladder epithelial cells by uropathogenicEscherichia coli. Journal of Experimental Medicine, 2011, 208, i3-i3.	4.2	1
24	Agonism with the omega-3 fatty acids \hat{l}_{\pm} -linolenic acid and docosahexaenoic acid mediates phosphorylation of both the short and long isoforms of the human GPR120 receptor. Biochemical and Biophysical Research Communications, 2010, 396, 1030-1035.	1.0	76
25	Androgens Transduce the Gî±s-Mediated Activation of Protein Kinase A in Prostate Cells. Cancer Research, 2008, 68, 3225-3231.	0.4	28
26	β2â€adrenergic receptor mediated generation of reactive oxygen species is a component required for signal transduction, desensitization, and homodimerization. FASEB Journal, 2008, 22, 723.6.	0.2	0
27	Agonist-stimulated reactive oxygen species formation regulates \hat{l}^2 2-adrenergic receptor signal transduction. Biochemical Pharmacology, 2007, 74, 64-73.	2.0	42
28	Role of PKA and PKC in histamine H1 receptor-mediated activation of catecholamine neurotransmitter synthesis. Neuroscience Letters, 2006, 407, 249-253.	1.0	13
29	Expression and Function of Lysophosphatidic Acid LPA1 Receptor in Prostate Cancer Cells. Endocrinology, 2006, 147, 4883-4892.	1.4	64
30	Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1295-1300.	3.3	169
31	Ligand-Directed Functional Heterogeneity of Histamine H1 Receptors: Novel Dual-Function Ligands Selectively Activate and Block H1-Mediated Phospholipase C and Adenylyl Cyclase Signaling. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 274-281.	1.3	38
32	A Novel Phenylaminotetralin Radioligand Reveals a Subpopulation of Histamine H1Receptors. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 328-336.	1.3	20