
Huawei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6651007/publications.pdf Version: 2024-02-01

HUMMEL ZHANC

#	Article	IF	CITATIONS
1	CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 2019, 70, 667-697.	18.7	959
2	Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8, 14261.	12.8	751
3	Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36, 1160-1163.	17.5	440
4	Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 2015, 1, 15144.	9.3	337
5	ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genetics, 2013, 9, e1003577.	3.5	330
6	Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2016, 2, 16139.	9.3	303
7	Insights into salt tolerance from the genome of <i>Thellungiella salsuginea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12219-12224.	7.1	272
8	An efficient system to detect protein ubiquitination by agroinfiltration in <i>Nicotiana benthamiana</i> . Plant Journal, 2010, 61, 893-903.	5.7	268
9	Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36, 894-898.	17.5	244
10	Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019, 62, 1-7.	4.9	244
11	Analysis of the functions of <i>Ta<scp>GW</scp>2</i> homoeologs in wheat grain weight and protein content traits. Plant Journal, 2018, 94, 857-866.	5.7	211
12	<scp>ABI</scp> 4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant Journal, 2016, 85, 348-361.	5.7	164
13	The SINA E3 Ligase OsDIS1 Negatively Regulates Drought Response in Rice Â. Plant Physiology, 2011, 157, 242-255.	4.8	158
14	The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Research, 2011, 21, 957-969.	12.0	136
15	The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in <i>Arabidopsis</i> . Plant Cell, 2015, 27, 214-227.	6.6	136
16	Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 2017, 44, 465-468.	3.9	122
17	ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis <i>FLOWERING LOCUS C</i> transcription. Journal of Experimental Botany, 2016, 67, 195-205.	4.8	112
18	Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 2017, 18, 191.	8.8	111

HUAWEI ZHANG

#	Article	IF	CITATIONS
19	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.	8.8	97
20	Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded Î ² C1. Molecular Plant, 2016, 9, 911-925.	8.3	80
21	The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates saltâ€stress response in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 81-92.	5.7	61
22	Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biology, 2018, 19, 197.	8.8	59
23	Manipulating mRNA splicing by base editing in plants. Science China Life Sciences, 2018, 61, 1293-1300.	4.9	50
24	Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 2020, 38, 1460-1465.	17.5	49
25	Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nature Protocols, 2020, 15, 338-363.	12.0	48
26	Transgene-free Genome Editing in Plants. Frontiers in Genome Editing, 2021, 3, 805317.	5.2	29
27	Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Molecular Biology Reports, 2012, 39, 4627-4633.	2.3	24
28	<i>GLABRA2</i> -based selection efficiently enriches Cas9-generated nonchimeric mutants in the T1 generation. Plant Physiology, 2021, 187, 758-768.	4.8	18
29	A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Molecular Biology, 2010, 72, 91-99.	3.9	17
30	Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators. Journal of Zhejiang University: Science B, 2022, 23, 339-344.	2.8	13
31	Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand. Science China Life Sciences, 2020, 63, 1619-1630.	4.9	10
32	Establishment of an Efficient Genome Editing System in Lettuce Without Sacrificing Specificity. Frontiers in Plant Science, 0, 13, .	3.6	5
33	An Efficient Method to Screen for Salt Tolerance Genes in Salt Cress. , 0, , .		0