
David J Willock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6650995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Catalysis. Angewandte Chemie - International Edition, 2006, 45, 7896-7936.	13.8	3,254
2	Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 2006, 311, 362-365.	12.6	1,976
3	Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 2008, 321, 1331-1335.	12.6	1,448
4	Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature, 2005, 437, 1132-1135.	27.8	955
5	Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, 2009, 323, 1037-1041.	12.6	759
6	Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science, 2011, 331, 195-199.	12.6	708
7	Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry, 2011, 3, 551-556.	13.6	517
8	Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chemical Communications, 2002, , 696-697.	4.1	498
9	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copperâ€Promoted Feâ€ZSMâ€5. Angewandte Chemie - International Edition, 2012, 51, 5129-5133.	13.8	492
10	Aqueous Au-Pd colloids catalyze selective CH ₄ oxidation to CH ₃ OH with O ₂ under mild conditions. Science, 2017, 358, 223-227.	12.6	478
11	Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chemical Communications, 2002, , 2058-2059.	4.1	476
12	Gold—an introductory perspective. Chemical Society Reviews, 2008, 37, 1759.	38.1	384
13	Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 2017, 355, 1399-1403.	12.6	380
14	Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Physical Chemistry Chemical Physics, 2003, 5, 1917-1923.	2.8	336
15	Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006, 242, 71-81.	6.2	322
16	Palladium and Gold–Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2008, 47, 9192-9198.	13.8	316
17	De novo design of structure-directing agents for the synthesis of microporous solids. Nature, 1996, 382, 604-606.	27.8	302
18	Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination. Journal of the American Chemical Society, 2015, 137, 14548-14557.	13.7	283

#	Article	IF	CITATIONS
19	Role of Electrostatic Interactions in Determining the Crystal Structures of Polar Organic Molecules. A Distributed Multipole Study. The Journal of Physical Chemistry, 1996, 100, 7352-7360.	2.9	280
20	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	47.7	275
21	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold–Palladium Alloy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 1280-1284.	13.8	239
22	Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science, 2012, 3, 20-44.	7.4	224
23	Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. Journal of Catalysis, 2007, 250, 231-239.	6.2	219
24	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Baseâ€Free Conditions. Angewandte Chemie - International Edition, 2011, 50, 10136-10139.	13.8	212
25	Direct Synthesis of H ₂ O ₂ from H ₂ and O ₂ over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acidâ€Pretreated TiO ₂ . Angewandte Chemie - International Edition, 2009, 48, 8512-8515.	13.8	210
26	Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chemical Communications, 1999, , 2151-2152.	4.1	208
27	Direct synthesis of hydrogen peroxide from H ₂ and O ₂ using supported Au–Pd catalysts. Faraday Discussions, 2008, 138, 225-239.	3.2	207
28	Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Auâ^'Pd Catalysts Prepared by Sol Immobilization. Langmuir, 2010, 26, 16568-16577.	3.5	201
29	Solvent-free Oxidation of Primary Alcohols to Aldehydes using Supported Gold Catalysts. Catalysis Letters, 2005, 103, 43-52.	2.6	194
30	Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today, 2015, 248, 3-9.	4.4	189
31	A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations. Journal of Physical Chemistry B, 2001, 105, 4889-4894.	2.6	184
32	Direct Synthesis of Hydrogen Peroxide from H2and O2Using Al2O3Supported Auâ^'Pd Catalysts. Chemistry of Materials, 2006, 18, 2689-2695.	6.7	183
33	Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. Journal of Materials Chemistry, 2005, 15, 4595.	6.7	180
34	Strategies for Designing Supported Gold–Palladium Bimetallic Catalysts for the Direct Synthesis of Hydrogen Peroxide. Accounts of Chemical Research, 2014, 47, 845-854.	15.6	179
35	On–Off Porosity Switching in a Molecular Organic Solid. Angewandte Chemie - International Edition, 2011, 50, 749-753.	13.8	176
36	Strategies for the Synthesis of Supported Gold Palladium Nanoparticles with Controlled Morphology and Composition. Accounts of Chemical Research, 2013, 46, 1759-1772.	15.6	167

#	Article	IF	CITATIONS
37	Recent Advances in the Direct Synthesis of H ₂ O ₂ . ChemCatChem, 2019, 11, 298-308.	3.7	156
38	The relaxation of molecular crystal structures using a distributed multipole electrostatic model. Journal of Computational Chemistry, 1995, 16, 628-647.	3.3	154
39	Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today, 2007, 122, 317-324.	4.4	150
40	Cationic Terminal Borylenes by Halide Abstraction:Â Synthesis and Spectroscopic and Structural Characterization of an FeB Double Bond. Journal of the American Chemical Society, 2003, 125, 6356-6357.	13.7	148
41	Selective oxidation of CO in the presence of H2, H2O and CO2via gold for use in fuel cells. Chemical Communications, 2005, , 3385.	4.1	146
42	The (010) surface of α-MoO3, a DFT + U study. Physical Chemistry Chemical Physics, 2005, 7, 3819.	2.8	146
43	Oxidation of glycerol using gold–palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics, 2009, 11, 4952.	2.8	144
44	Characterisation of gold catalysts. Chemical Society Reviews, 2016, 45, 4953-4994.	38.1	140
45	Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis, 2013, 297, 128-136.	6.2	139
46	Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics, 2009, 11, 5142.	2.8	138
47	Theory and simulation in heterogeneous gold catalysis. Chemical Society Reviews, 2008, 37, 2046.	38.1	136
48	Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics, 2008, 10, 1921.	2.8	136
49	Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A: General, 2006, 312, 67-76.	4.3	134
50	Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H ₂ and O ₂ . Green Chemistry, 2008, 10, 388-394.	9.0	131
51	Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature, 2016, 531, 83-87.	27.8	128
52	Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products. Catalysis Today, 1990, 6, 279-306.	4.4	125
53	Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butane to maleic anhydride. Journal of Materials Chemistry, 2004, 14, 3385.	6.7	120
54	FeB Double Bonds:Â Synthetic, Structural, and Reaction Chemistry of Cationic Terminal Borylene Complexes. Organometallics, 2004, 23, 2911-2926.	2.3	119

#	Article	IF	CITATIONS
55	Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic Methane Oxidation: From Synthesis to Catalysis. ACS Catalysis, 2013, 3, 689-699.	11.2	117
56	Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today, 2016, 270, 93-100.	4.4	113
57	Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 2012, 286, 206-213.	6.2	106
58	Efficient green methanol synthesis from glycerol. Nature Chemistry, 2015, 7, 1028-1032.	13.6	106
59	Synthesis, Antimalarial Activity, and Molecular Modeling of Tebuquine Analogues. Journal of Medicinal Chemistry, 1997, 40, 437-448.	6.4	105
60	Solvent-free oxidation of benzyl alcohol using titania-supported gold–palladium catalysts: Effect of Au–Pd ratio on catalytic performance. Catalysis Today, 2007, 122, 407-411.	4.4	104
61	Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd catalysts. Catalysis Today, 2007, 122, 397-402.	4.4	103
62	Catalytic and Mechanistic Insights of the Lowâ€Temperature Selective Oxidation of Methane over Cuâ€Promoted Feâ€ZSMâ€5. Chemistry - A European Journal, 2012, 18, 15735-15745.	3.3	102
63	Controlling the Duality of the Mechanism in Liquidâ€Phase Oxidation of Benzyl Alcohol Catalysed by Supported Au–Pd Nanoparticles. Chemistry - A European Journal, 2011, 17, 6524-6532.	3.3	100
64	Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. ACS Catalysis, 2013, 3, 1835-1844.	11.2	99
65	Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. ACS Catalysis, 2018, 8, 2567-2576.	11.2	99
66	Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry, 2009, 11, 1209.	9.0	97
67	Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis, 2022, 5, 45-54.	34.4	95
68	Effect of Reaction Conditions on the Direct Synthesis of Hydrogen Peroxide with a AuPd/TiO ₂ Catalyst in a Flow Reactor. ACS Catalysis, 2013, 3, 487-501.	11.2	93
69	Selective oxidation of CO in the presence of H2, H2O and CO2utilising Au/α-Fe2O3catalysts for use in fuel cells. Journal of Materials Chemistry, 2006, 16, 199-208.	6.7	92
70	Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. Catalysis Today, 2002, 72, 107-113.	4.4	91
71	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. ACS Catalysis, 2015, 5, 5047-5059.	11.2	91
72	Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5. Comments on the mechanism of carbon–carbon bond and methane formation. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 571.	1.0	90

#	Article	IF	CITATIONS
73	The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry, 2008, 10, 1162.	9.0	89
74	Involvement of Surfaceâ€Bound Radicals in the Oxidation of Toluene Using Supported Auâ€₽d Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5981-5985.	13.8	89
75	Control of product selectivity in the partial oxidation of methane. Nature, 1990, 348, 428-429.	27.8	87
76	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	4.1	87
77	Synthesis of a Small-Pore Microporous Material Using a Computationally Designed Template. Angewandte Chemie International Edition in English, 1997, 36, 2675-2677.	4.4	85
78	Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society, 2013, 135, 11087-11099.	13.7	83
79	Elucidating the Role of CO ₂ in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. ACS Catalysis, 2018, 8, 3454-3468.	11.2	80
80	Metabolism-Dependent Neutrophil Cytotoxicity of Amodiaquine: A Comparison with Pyronaridine and Related Antimalarial Drugs. Chemical Research in Toxicology, 1998, 11, 1586-1595.	3.3	79
81	Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics, 2002, 4, 5915-5920.	2.8	79
82	Tailoring the selectivity of glycerol oxidation by tuning the acid–base properties of Au catalysts. Catalysis Science and Technology, 2015, 5, 1126-1132.	4.1	78
83	Analysis of Bonding in Cyclopentadienyl Transition-Metal Boryl Complexes. Organometallics, 2002, 21, 1146-1157.	2.3	77
84	Cationic Terminal Borylene Complexes: Structure/Bonding Analysis and [4+1] Cycloaddition Reactivity of a BN Vinylidene Analogue. Angewandte Chemie - International Edition, 2006, 45, 6118-6122.	13.8	75
85	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 163, 47-54.	4.4	73
86	Baseâ€Free Oxidation of Glycerol Using Titaniaâ€Supported Trimetallic Au–Pd–Pt Nanoparticles. ChemSusChem, 2014, 7, 1326-1334.	6.8	73
87	Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry, 2014, 16, 3132-3141.	9.0	71
88	High-activity Au/CuO–ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 187-188.	1.7	70
89	Methane Oxidation to Methanol in Water. Accounts of Chemical Research, 2021, 54, 2614-2623.	15.6	69
90	Nanocrystalline gold and gold–palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Transactions, 2008, , 5523.	3.3	68

#	Article	IF	CITATIONS
91	Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold–Palladium Catalysts. ChemSusChem, 2009, 2, 575-580.	6.8	68
92	Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 2017, 19, 225-236.	9.0	68
93	Complexes of a gallium heterocycle with transition metal dicyclopentadienyl and cyclopentadienylcarbonyl fragments, and with a dialkylmanganese compound. Dalton Transactions, 2006, , 3313.	3.3	66
94	Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chemistry, 2021, 23, 9747-9799.	9.0	66
95	Carbonyl analogues? Analysis of Fe–E (E = B, Al, Ga) bonding in cationic terminal diyl complexes by density functional theory. Dalton Transactions, 2004, , 2649-2654.	3.3	65
96	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65
97	CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles. Surface Science, 2016, 646, 210-220.	1.9	65
98	Effect of heat treatment on Au–Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcoholoxidation. Catalysis Science and Technology, 2013, 3, 308-317.	4.1	64
99	Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science and Technology, 2016, 6, 3410-3418.	4.1	64
100	The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry, 2010, 12, 915.	9.0	63
101	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications, 2016, 7, 12905.	12.8	62
102	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry, 2009, 11, 1037.	9.0	61
103	Heterogeneous Trimetallic Nanoparticles as Catalysts. Chemical Reviews, 2022, 122, 6795-6849.	47.7	61
104	A Group 13/Group 17 Analogue of CO and N ₂ : Coordinative Trapping of the Gal Molecule. Journal of the American Chemical Society, 2008, 130, 5449-5451.	13.7	60
105	Structure Sensitivity in Catalytic Hydrogenation at Platinum Surfaces Measured by Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy (SHINERS). ACS Catalysis, 2016, 6, 1822-1832.	11.2	60
106	Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks. Journal of Physical Chemistry C, 2008, 112, 20549-20559.	3.1	59
107	The functionalisation of graphite surfaces with nitric acid: Identification of functional groups and their effects on gold deposition. Journal of Catalysis, 2015, 323, 10-18.	6.2	59
108	Effect of the reaction conditions on the performance of Au–Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics, 2010, 12, 2488.	2.8	58

#	Article	IF	CITATIONS
109	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today, 2013, 203, 139-145.	4.4	58
110	Gold Catalysis: A Reflection on Where We are Now. Catalysis Letters, 2015, 145, 71-79.	2.6	56
111	The partial oxidation of methane to methanol: An approach to catalyst design. Catalysis Today, 1998, 42, 217-224.	4.4	55
112	The Structure of Metallomicelles. Chemistry - A European Journal, 2004, 10, 2022-2028.	3.3	55
113	HETEROGENEOUS ASYMMETRIC CATALYSTS: Strategies for Achieving High Enantioselection. Annual Review of Materials Research, 2005, 35, 143-166.	9.3	55
114	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry, 2011, 13, 127-134.	9.0	55
115	Catalytic heterogeneous aziridination of alkenes using microporous materials. Chemical Communications, 1998, , 1601-1602.	4.1	53
116	Halide Abstraction as a Route to Cationic Transition-Metal Complexes Containing Two-Coordinate Gallium and Indium Ligand Systems. Organometallics, 2005, 24, 5891-5900.	2.3	53
117	Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science and Technology, 2016, 6, 107-117.	4.1	53
118	Cold, palladium and gold–palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science and Technology, 2012, 2, 1914.	4.1	52
119	Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the method of preparation. Catalysis Letters, 1995, 33, 369-385.	2.6	51
120	Fe–Ga multiple bonding? Synthesis, spectroscopic and structural characterization of a transition metal complex containing a cationic two-coordinate gallium centre. Chemical Communications, 2004, , 1732-1733.	4.1	50
121	Density Functional Theory Calculations on the Interaction of Ethene with the {111} Surface of Platinum. Journal of Physical Chemistry B, 2000, 104, 6439-6446.	2.6	49
122	Cationic Terminal Gallylene Complexes by Halide Abstraction: Coordination Chemistry of a Valence Isoelectronic Analogue of CO and N ₂ . Journal of the American Chemical Society, 2008, 130, 16111-16124.	13.7	49
123	Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the reaction conditions and catalyst acidity. Catalysis Letters, 1996, 39, 83-90.	2.6	48
124	Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts. Journal of Molecular Catalysis A, 2001, 165, 243-247.	4.8	48
125	Catalytic asymmetric heterogeneous aziridination of alkenes using zeolite CuHY with [N-( p-tolylsulfonyl)imino]phenyliodinane as nitrene donor. Journal of the Chemical Society Perkin Transactions II, 1999, , 1043.	0.9	47
126	Cationic Terminal Aminoborylene Complexes: Controlled Stepwise Insertion into MB and BN Double Bonds. Angewandte Chemie - International Edition, 2007, 46, 2043-2046.	13.8	47

#	Article	IF	CITATIONS
127	Designing oxidation catalysts. Catalysis Today, 1999, 49, 105-113.	4.4	46
128	Solvent Effect and Reactivity Trend in the Aerobic Oxidation of 1,3â€Propanediols over Gold Supported on Titania: NMR Diffusion and Relaxation Studies. Chemistry - A European Journal, 2013, 19, 11725-11732.	3.3	46
129	Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science, 2014, 5, 3603-3616.	7.4	45
130	Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General, 2015, 504, 373-380.	4.3	45
131	A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. Chemistry - A European Journal, 2021, 27, 16809-16833.	3.3	45
132	Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity. Applied Catalysis B: Environmental, 2022, 302, 120823.	20.2	45
133	A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today, 2005, 105, 85-92.	4.4	43
134	In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics, 2013, 15, 12147.	2.8	43
135	Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2014, 118, 12734-12743.	3.1	43
136	Methane Activation by Selective Oxidation. Topics in Catalysis, 2016, 59, 658-662.	2.8	43
137	Methanol conversion to hydrocarbons over zeolite catalysts: comments on the reaction mechanism for the formation of the first carbon–carbon bond. Microporous and Mesoporous Materials, 1999, 29, 67-77.	4.4	42
138	The Direct Synthesis of H ₂ O ₂ Using TSâ€4 Supported Catalysts. ChemCatChem, 2019, 11, 1673-1680.	3.7	42
139	Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry, 2004, 28, 708.	2.8	40
140	Bespoke Force Field for Simulating the Molecular Dynamics of Porous Organic Cages. Journal of Physical Chemistry C, 2012, 116, 16639-16651.	3.1	40
141	The conversion of levulinic acid into γ-valerolactone using Cu–ZrO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 6022-6030.	4.1	40
142	Designing templates for the synthesis of microporous solids using de novo molecular design methods. Journal of Molecular Catalysis A, 1997, 119, 415-424.	4.8	38
143	In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today, 2009, 145, 251-257.	4.4	38
144	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38

#	Article	IF	CITATIONS
145	Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today, 2020, 342, 32-38.	4.4	38
146	Selective catalytic oxidation using supported gold–platinum and palladium–platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics, 2013, 15, 10636.	2.8	37
147	Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst. Physical Chemistry Chemical Physics, 2000, 2, 1523-1529.	2.8	36
148	The Effect of Grafting Zirconia and Ceria onto Alumina as a Support for Silicotungstic Acid for the Catalytic Dehydration of Glycerol to Acrolein. Chemistry - A European Journal, 2014, 20, 1743-1752.	3.3	36
149	Explicit Detection of the Mechanism of Platinum Nanoparticle Shape Control by Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2016, 120, 7532-7542.	3.1	36
150	Pulsed-Field Gradient NMR Spectroscopic Studies of Alcohols in Supported Gold Catalysts. Journal of Physical Chemistry C, 2011, 115, 1073-1079.	3.1	35
151	The decomposition of H ₂ O ₂ over the components of Au/TiO ₂ Âcatalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1885-1899.	2.1	35
152	Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions. Topics in Catalysis, 2013, 56, 1843-1857.	2.8	35
153	Addressing stability challenges of using bimetallic electrocatalysts: the case of gold–palladium nanoalloys. Catalysis Science and Technology, 2017, 7, 1848-1856.	4.1	35
154	Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science and Technology, 2014, 4, 1313-1322.	4.1	34
155	Ab initio simulation of the interaction of hydrogen with the {111} surfaces of platinum, palladium and nickel. A possible explanation for their difference in hydrogenation activity. Chemical Communications, 2000, , 705-706.	4.1	33
156	Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry, 2006, 16, 1978.	6.7	33
157	Insertion reactions of dicyclohexylcarbodiimide with aminoboranes, -boryls and -borylenes. Dalton Transactions, 2007, , 4405.	3.3	33
158	The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis, 2012, 55, 1283-1288.	2.8	33
159	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104.	4.1	32
160	Investigating the influence of acid sites in continuous methane oxidation with N ₂ O over Fe/MFI zeolites. Catalysis Science and Technology, 2018, 8, 154-163.	4.1	32
161	A Kinetic Study of Methane Partial Oxidation over Feâ€ZSMâ€5 Using N ₂ O as an Oxidant. ChemPhysChem, 2018, 19, 402-411.	2.1	31
162	Lowering the Operating Temperature of Perovskite Catalysts for N ₂ O Decomposition through Control of Preparation Methods. ACS Catalysis, 2020, 10, 5430-5442.	11.2	31

#	Article	IF	CITATIONS
163	Enantioselective Dehydration of Butan-2-ol Using Zeolite Y Modified with Dithiane Oxides. Journal of Catalysis, 1997, 167, 533-542.	6.2	30
164	Direct Observation of Enantiomer Discrimination of Epoxides by Chiral Salen Complexes Using ENDOR. Journal of the American Chemical Society, 2004, 126, 15660-15661.	13.7	30
165	A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3. Faraday Discussions, 2011, 152, 135.	3.2	30
166	The hydrogenation of levulinic acid to γ-valerolactone over Cu–ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry, 2019, 36, 15-24.	12.9	30
167	The Direct Synthesis of H2O2 and Selective Oxidation of Methane to Methanol Using HZSM-5 Supported AuPd Catalysts. Catalysis Letters, 2019, 149, 3066-3075.	2.6	30
168	The role of gas phase reaction in the selective oxidation of methane. Journal of the Chemical Society Chemical Communications, 1988, , 253.	2.0	28
169	Heterogeneous aziridination of alkenes using Cu2+ exchanged zeolites. Applied Catalysis A: General, 1999, 182, 85-89.	4.3	28
170	Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science and Technology, 2011, 1, 747.	4.1	28
171	CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics, 2011, 13, 2528-2538.	2.8	28
172	Recent Advances in the Gold-Catalysed Low-Temperature Water–Gas Shift Reaction. Catalysts, 2018, 8, 627.	3.5	28
173	Catalytic Asymmetric Heterogeneous Aziridination Using CuHY/bis(oxazoline): Effect of Reaction Conditions on Enantioselectivity. Topics in Catalysis, 2003, 25, 81-88.	2.8	25
174	Reactivity of the bis(pentafluorophenyl)boranes ClB(C6F5)2 and [HB(C6F5)2]n towards late transition metal reagents. Dalton Transactions, 2004, , 4030.	3.3	25
175	High Activity Redox Catalysts Synthesized by Chemical Vapor Impregnation. ACS Nano, 2014, 8, 957-969.	14.6	25
176	Computer Simulation of Structural Aspects of Enantioselective Heterogeneous Catalysis and the Prospects for Direct Calculation of Selectivity. Topics in Catalysis, 2003, 25, 89-102.	2.8	24
177	Observation of high enantioselectivity for the gas phase hydrogenation of methyl pyruvate using supported Pt catalysts pre-modified with cinchonidineElectronic supplementary information (ESI) available: use of the Kelvin equation and reactant partial pressure to estimate the effective partial pressure for condensation as a function of pore radius. See	4.1	24
178	http://www.rsc.org/suppdata/cc/b3/b304976k/. Chemical Communications, 2003, , 1926. Initiator-free hydrocarbon oxidation using supported gold nanoparticles. Catalysis Science and Technology, 2014, 4, 908-911.	4.1	24
179	Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis, 2015, 330, 84-92.	6.2	24
180	An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates. Catalysts, 2016, 6, 71.	3.5	24

#	Article	IF	CITATIONS
181	Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts. Catalysis Science and Technology, 2012, 2, 1908.	4.1	23
182	The Role of Mg(OH) ₂ in the Soâ€Called "Baseâ€Free―Oxidation of Glycerol with AuPd Catalysts. Chemistry - A European Journal, 2018, 24, 2396-2402.	3.3	23
183	Sustainable production of glucaric acid from corn stover via glucose oxidation: An assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chemical Engineering Research and Design, 2020, 153, 337-349.	5.6	23
184	Linking of metal centres through boryl ligands: synthesis, spectroscopic and structural characterisation of symmetrically bridged boryl complexes. Dalton Transactions RSC, 2002, , 2020-2026.	2.3	22
185	The effect of intermolecular hydrogen bonding on the planarity of amides. Physical Chemistry Chemical Physics, 2012, 14, 11944.	2.8	22
186	The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSMâ€5 Catalysts. ChemPhysChem, 2018, 19, 469-478.	2.1	22
187	Asymmetric hetero-Diels–Alder reactions. Reactions of oxazolo[3,2- c]pyrimidines. Tetrahedron, 2001, 57, 10139-10146.	1.9	21
188	Selective Hydrogenation of Levulinic Acid Using Ru/C Catalysts Prepared by Sol-Immobilisation. Topics in Catalysis, 2018, 61, 833-843.	2.8	21
189	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	3.1	21
190	Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology, 2020, 10, 5935-5944.	4.1	21
191	Gas-phase catalytic asymmetric reaction using chirally modified microporous catalysts. Journal of the Chemical Society Chemical Communications, 1995, , 2409.	2.0	20
192	Visualizing Diastereomeric Interactions of Chiral Amine–Chiral Copper Salen Adducts by EPR Spectroscopy and DFT. Inorganic Chemistry, 2011, 50, 6944-6955.	4.0	20
193	A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles. Research on Chemical Intermediates, 2015, 41, 9587-9601.	2.7	20
194	Depressing the hydrogenation and decomposition reaction in H ₂ O ₂ synthesis by supporting AuPd on oxygen functionalized carbon nanofibers. Catalysis Science and Technology, 2016, 6, 694-697.	4.1	20
195	Title is missing!. Catalysis Letters, 2003, 87, 103-108.	2.6	19
196	Novel Properties from Experimental Charge Densities: An Application to the Zwitterionic Neurotransmitter Taurine. Chemistry - A European Journal, 2006, 12, 7603-7614.	3.3	19
197	ï€ adsorption of ethene on to the {111} surface of copper. Surface Science, 2000, 459, 93-103.	1.9	18
198	Sulfonylation of substituted benzenes using Zn-exchanged zeolites. Journal of Molecular Catalysis A, 2002, 178, 205-209.	4.8	18

#	Article	IF	CITATIONS
199	The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science and Technology, 2013, 3, 1531.	4.1	18
200	Spectroscopic and atomic force studies of the functionalisation of carbon surfaces: new insights into the role of the surface topography and specific chemical states. Faraday Discussions, 2014, 173, 257-272.	3.2	18
201	Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. Nature Communications, 2016, 7, 12855.	12.8	18
202	Investigating the Influence of Fe Speciation on N2O Decomposition Over Fe–ZSM-5 Catalysts. Topics in Catalysis, 2018, 61, 1983-1992.	2.8	18
203	Highly Active Gold and Gold–Palladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. ChemCatChem, 2017, 9, 2914-2918.	3.7	17
204	The adsorption of Cu on the CeO ₂ (110) surface. Physical Chemistry Chemical Physics, 2017, 19, 27191-27203.	2.8	17
205	Asymmetric hetero-Diels-Alder reactions. Mechanism of the reaction of alkenyloxazolines with isocyanates. Tetrahedron Letters, 1998, 39, 8911-8914.	1.4	16
206	An IMDA Approach to Tigliane and Daphnane Diterpenoids: Generation of Rings A, B and C Incorporating C-18. Synlett, 2002, 2002, 0583-0587.	1.8	16
207	Enantioselective Hydrogenation Using Cinchona-Modified Pt/Â-Al2O3Catalysts: Comparison of the Reaction of Ethyl Pyruvate and Buta-2,3-dione. Catalysis Letters, 2004, 96, 147-151.	2.6	16
208	On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic and Biomolecular Chemistry, 2011, 9, 1079-1084.	2.8	16
209	Solvent-Free Aerobic Epoxidation of Dec-1-ene Using Gold/Graphite as a Catalyst. Catalysis Letters, 2015, 145, 689-696.	2.6	16
210	Gas phase stabiliser-free production of hydrogen peroxide using supported gold–palladium catalysts. Chemical Science, 2016, 7, 5833-5837.	7.4	16
211	The Lowâ€Temperature Oxidation of Propane by using H ₂ O ₂ and Fe/ZSMâ€5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. ChemCatChem, 2017, 9, 642-650.	3.7	16
212	CO ₂ Hydrogenation to CH ₃ OH over PdZn Catalysts, with Reduced CH ₄ Production. ChemCatChem, 2020, 12, 6024-6032.	3.7	16
213	The Influence of Reaction Conditions on the Oxidation of Cyclohexane via the In-Situ Production of H2O2. Catalysis Letters, 2021, 151, 164-171.	2.6	16
214	Hydrocarbon formation from methylating agents over the zeolite catalyst H-ZSM-5 and its conjugate base: evidence against the trimethyloxonium ion–ylide mechanism. Journal of the Chemical Society Chemical Communications, 1985, , 1643-1645.	2.0	15
215	Transit currents in a one-dimensional polymer single crystal. Journal of Physics Condensed Matter, 1992, 4, 2517-2532.	1.8	15
216	Perfluoroaryl boryl complexes: synthesis, spectroscopic and structural characterisation of a complex containing the bis(pentafluorophenyl)boryl ligand. Chemical Communications, 2001, , 1846-1847.	4.1	15

#	Article	IF	CITATIONS
217	Title is missing!. Catalysis Letters, 2002, 78, 369-372.	2.6	15
218	Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters, 2012, 142, 1114-1120.	2.6	15
219	Modelling analysis of the structure and porosity of covalent triazine-based frameworks. Physical Chemistry Chemical Physics, 2015, 17, 817-823.	2.8	15
220	Homocoupling of Phenylboronic Acid using Atomically Dispersed Gold on Carbon Catalysts: Catalyst Evolution Before Reaction. ChemCatChem, 2018, 10, 1853-1859.	3.7	15
221	Title is missing!. Topics in Catalysis, 1998, 5, 177-185.	2.8	14
222	Conformational changes of an oxovanadium complex probed by ENDOR spectroscopy and DFT calculations. Physical Chemistry Chemical Physics, 2002, 4, 4937-4943.	2.8	14
223	Influence of counterions on the structure of bis(oxazoline)copper(ii) complexes; an EPR and ENDOR investigation. Dalton Transactions, 2012, 41, 11085.	3.3	14
224	Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron, 2014, 70, 6055-6058.	1.9	14
225	Dehydration of butan-2-ol using modified zeolite crystals. Applied Catalysis A: General, 1999, 182, 75-84.	4.3	13
226	Inversion of enantioselectivity for the hydrogenation of ethyl pyruvate in the gas-phase over Pt/SiO2 modified with derivatives of hydroquinidine. Journal of Catalysis, 2006, 243, 165-170.	6.2	13
227	Discrimination of Geometrical Epoxide Isomers by ENDOR Spectroscopy and DFT Calculations: The Role of Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1414-1416.	13.8	13
228	Explaining the phase behaviour of the pharmaceutically relevant polymers poly(ethylene glycol) and poly(vinyl pyrrolidone) in semi-fluorinated liquids. Journal of Pharmacy and Pharmacology, 2010, 57, 973-980.	2.4	13
229	Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research, 2014, 4, 85-94.	1.3	13
230	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	3.7	13
231	Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies. ACS Catalysis, 2021, 11, 4893-4907.	11.2	13
232	Heterogeneous enantioselective dehydration of butan-2-ol. Studies in Surface Science and Catalysis, 1996, 101, 211-219.	1.5	12
233	The role of organic templates in controlling zeolite crystal morphology. Studies in Surface Science and Catalysis, 2007, , 1685-1692.	1.5	12
234	The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science and Technology, 2016, 6, 7521-7531.	4.1	12

#	Article	IF	CITATIONS
235	The electronic properties of Au clusters on CeO ₂ (110) surface with and without O-defects. Faraday Discussions, 2018, 208, 123-145.	3.2	12
236	Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis, 2018, 364, 102-111.	6.2	12
237	Photoactive Ag(I)-Based Coordination Polymer as a Potential Semiconductor for Photocatalytic Water Splitting and Environmental Remediation: Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2019, 123, 23940-23950.	3.1	12
238	New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology, 2019, 9, 1464-1475.	4.1	12
239	Enantioselection using modified zeolite catalysts. Journal of Molecular Catalysis A, 1996, 107, 291-295.	4.8	11
240	Synthese eines kleinporigen mikroporösen Materials unter Verwendung eines computerâ€gestützt entworfenen Templats. Angewandte Chemie, 1997, 109, 2791-2793.	2.0	11
241	High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Michael Addition and Knoevenagel Condensation Reactions. Synthesis, 2005, 2005, 3468-3476.	2.3	11
242	Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today, 2019, 333, 154-160.	4.4	11
243	The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today, 2021, 381, 76-85.	4.4	11
244	Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H ₂ O ₂ . Catalysis Science and Technology, 2021, 11, 8052-8064.	4.1	11
245	Calculation of the energy profile for the fluorination of dichloromethane over an α-alumina catalyst. Applied Catalysis A: General, 2000, 200, 263-274.	4.3	10
246	Geometrical preferences of complexes of terpyridine N-oxide ligands: synthesis and crystal structures of nickel(II) with terpyridine 1,1′,1″-trioxide, terpyridine 1,1″-dioxide and terpyridine 1-oxide. Dalton Transactions RSC, 2001, , 225-227.	2.3	10
247	Heterogeneous aziridination of styrene using [N-(p-nitrophenylsulfonyl)imino]phenyliodinane as nitrene donor: influence of the reaction parameters on yield and enantioselectivity. Journal of Molecular Catalysis A, 2002, 182-183, 571-575.	4.8	10
248	Continuous stable enantioselective hydrogenation of alkyl pyruvate esters using pre-modified cinchonidine platinum catalysts. Catalysis Letters, 2005, 100, 255-258.	2.6	10
249	Enantioselective hydrogenation of N-acetyl dehydrophenylalanine methyl ester using cinchonine-modified Pd/Al2O3 catalysts. Journal of Catalysis, 2006, 243, 360-367.	6.2	10
250	Enantioselective binding of structural epoxide isomers by a chiral vanadyl salen complex: a pulsed EPR, cw-ENDOR and DFT investigation. Physical Chemistry Chemical Physics, 2009, 11, 6757.	2.8	10
251	Towards heterogeneous organocatalysis: chiral iminium cations supported on porous materials for enantioselective alkene epoxidation. Catalysis Science and Technology, 2013, 3, 2330.	4.1	10
252	The adsorption and dissociation of CO on Fe(111). Surface Science, 2014, 625, 69-83.	1.9	10

#	Article	IF	CITATIONS
253	Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies, 2019, 12, 1359.	3.1	10
254	Density functional theory studies of the uncatalysed gas-phase oxidative dehydrogenation conversion of n -hexane to hexenes. Computational and Theoretical Chemistry, 2017, 1114, 153-164.	2.5	10
255	Creating chiral centres in zeolite Y by the introduction of R-1,3-dithiane 1-oxide as a modifier: Computer simulation of the modifier stability. Topics in Catalysis, 1996, 3, 77-89.	2.8	9
256	An ENDOR and DFT analysis of â€~solvatochromic' effects in an oxovanadium (IV) complex. Chemical Physics Letters, 2003, 380, 758-766.	2.6	9
257	Unexpected inversion of enantioselectivity during the hydrogenation of ethyl pyruvate using hydroquinine and hydroquinidine modified Pt/Al2O3. Catalysis Letters, 2006, 110, 135-138.	2.6	9
258	Probing the role of weak outer sphere interactions (H-bonds) in VO(3,5-tBu2-salophen) – Epoxide adducts by EPR, ENDOR and HYSCORE. Chemical Physics Letters, 2010, 486, 74-79.	2.6	9
259	Enantioselective Hydrogenation of α-Ketoesters: An in Situ Surface-Enhanced Raman Spectroscopy (SERS) Study. Journal of Physical Chemistry C, 2011, 115, 21363-21372.	3.1	9
260	The adsorption of ethene on Fe(111) and surface carbide formation. Catalysis Today, 2015, 244, 122-129.	4.4	9
261	<i>x</i> Ni– <i>y</i> Cu–ZrO ₂ catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Journal of Lithic Studies, 2018, 4, 12-23.	0.5	9
262	Oxidation of Polynuclear Aromatic Hydrocarbons using Rutheniumâ€lonâ€Catalyzed Oxidation: The Role of Aromatic Ring Number in Reaction Kinetics and Product Distribution. Chemistry - A European Journal, 2018, 24, 655-662.	3.3	9
263	Studies of the Mechanism of the Oxidative Coupling of Methane Using Oxide Catalysts. , 1992, , 200-258.		9
264	Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO ₃ photocatalyst under ambient conditions. Catalysis Science and Technology, 2022, 12, 3727-3736.	4.1	9
265	The enumeration of structures for \hat{I}^3 -alumina based on a defective spinel structure. Chemical Communications, 2001, , 1076-1077.	4.1	8
266	Selective Oxidation of Alkylâ€Substituted Polyaromatics Using Rutheniumâ€Ionâ€Catalyzed Oxidation. Chemistry - A European Journal, 2015, 21, 4285-4293.	3.3	8
267	Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today, 2020, 357, 3-7.	4.4	8
268	Polarizability anisotropies of cyano-substituted azulene, biphenyl, 2,2'- bipyridyl and naphthalene. Molecular Physics, 1999, 97, 913-918.	1.7	7
269	Linking of metal centres through boryl ligands: synthesis, spectroscopic and structural characterisation of a symmetrically bridged boryl complex CpFe(CO)2BO2C6H2O2BFe(CO)2Cp. Chemical Communications, 2000, , 1377-1378.	4.1	7
270	Highly diastereoselective dimerisation of alkenylthiazolines. Tetrahedron Letters, 2001, 42, 4937-4939.	1.4	7

#	Article	IF	CITATIONS
271	Novel radical tandem 1,6-enynes thioacylation/cyclization: Au–Pd nanoparticles catalysis versus thermal activation as a function ofÂtheÂsubstrate specificity. Tetrahedron, 2014, 70, 9635-9643.	1.9	7
272	Mechanistic Insights into Selective Oxidation of Polyaromatic Compounds using RICO Chemistry. Chemistry - A European Journal, 2018, 24, 12359-12369.	3.3	7
273	Materials and Molecular Modeling at the Exascale. Computing in Science and Engineering, 2022, 24, 36-45.	1.2	7
274	The oxidative degradation of phenol <i>via in situ</i> H ₂ O ₂ synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science and Technology, 2022, 12, 2943-2953.	4.1	7
275	LiAl(OPri)4 as a model compound for the conjugate base of the zeolite catalyst H-ZSM-5 and its reaction with various methylating agents. Journal of the Chemical Society Chemical Communications, 1985, , 886.	2.0	6
276	Selective conversion of allyl alcohol to oxygenates and hydrocarbons using ion exchanged zeolite Y. Catalysis Letters, 1995, 34, 115-127.	2.6	6
277	A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today, 2001, 71, 3-10.	4.4	6
278	Long range superhyperfine interactions in polycrystalline vanadium doped SnO2 investigated by CW and pulsed ENDOR spectroscopy. Chemical Physics Letters, 2004, 391, 1-8.	2.6	6
279	Diastereoselective Dimerisation of Alkenylthiazolines: A Combined Synthetic and Computational Study. European Journal of Organic Chemistry, 2005, 2005, 3791-3800.	2.4	6
280	Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2. Topics in Catalysis, 2021, 64, 965-973.	2.8	6
281	Band gap engineering of amine functionalized Ag(I)-based coordination polymers and their plasmonic Ag0 coupled novel visible light driven photo-redox system for selective oxidation of benzyl alcohol. Applied Catalysis B: Environmental, 2022, 303, 120821.	20.2	6
282	The Direct Synthesis of Hydrogen Peroxide Over Supported Pd-Based Catalysts: An Investigation into the Role of the Support and Secondary Metal Modifiers. Catalysis Letters, 2023, 153, 32-40.	2.6	6
283	Cold-Based Nanoparticulate Catalysts for the Oxidative Esterification of 1,4-Butanediol to Dimethyl Succinate. Topics in Catalysis, 2014, 57, 723-729.	2.8	5
284	The challenges of characterising nanoparticulate catalysts: general discussion. Faraday Discussions, 2018, 208, 339-394.	3.2	5
285	A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions, 2021, 229, 108-130.	3.2	5
286	Enantioselective Reactions Using Modified Microporous and Mesoporous Materials. Fundamental and Applied Catalysis, 2002, , 241-274.	0.9	5
287	The effects of oxygen on charge transport in PDATS. Journal of Physics Condensed Matter, 1992, 4, 2533-2542.	1.8	4
288	Temperature dependence of transit currents in a one-dimensional polymer single crystal. Journal of Physics Condensed Matter, 1992, 4, 6613-6628.	1.8	4

#	Article	IF	CITATIONS
289	The effect of pre-sulfiding of catalysts for the vapour phase catalytic synthesis of thiophenes. Catalysis Letters, 2000, 68, 75-77.	2.6	4
290	Epoxidation of Propene with Graphite AuPd-Supported Nanoparticles. Catalysis Letters, 2015, 145, 697-701.	2.6	4
291	Designing new catalysts: synthesis of new active structures: general discussion. Faraday Discussions, 2016, 188, 131-159.	3.2	4
292	A DFT mechanistic study of the ODH of n-hexane over isolated H3VO4. Molecular Catalysis, 2018, 452, 83-92.	2.0	4
293	Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A, 2020, 8, 15725-15733.	10.3	4
294	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4781-4790.	3.1	4
295	Effect of the Preparation Method of LaSrCoFeOx Perovskites on the Activity of N2O Decomposition. Catalysis Letters, 2022, 152, 213-226.	2.6	4
296	Iron‑chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications, 2022, 162, 106383.	3.3	4
297	13ÂÂCatalysis: Experimental and computational. Annual Reports on the Progress of Chemistry Section B, 2005, 101, 333.	0.9	3
298	All-atom molecular dynamics simulation of HPMA polymers. RSC Advances, 2014, 4, 7003.	3.6	3
299	Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study. Physical Chemistry Chemical Physics, 2014, 16, 11202-11210.	2.8	3
300	Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science and Technology, 2015, 5, 3953-3959.	4.1	3
301	Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science and Technology, 2015, 5, 1307-1313.	4.1	3
302	Bridging model and real catalysts: general discussion. Faraday Discussions, 2016, 188, 565-589.	3.2	3
303	Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene. Faraday Discussions, 2018, 208, 67-85.	3.2	3
304	Gold as a Catalyst for the Ring Opening of 2,5-Dimethylfuran. Catalysis Letters, 2018, 148, 2109-2116.	2.6	3
305	Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions, 2018, 208, 147-185.	3.2	3
306	Low-Temperature Catalytic Selective Oxidation of Methane to Methanol. Green Chemistry and Sustainable Technology, 2019, , 37-59.	0.7	3

#	Article	IF	CITATIONS
307	Title is missing!. Catalysis Letters, 1997, 46, 249-254.	2.6	2
308	The role of gallium oxide in methane partial oxidation catalysts: An experimental and theoretical study. Studies in Surface Science and Catalysis, 2001, 136, 319-324.	1.5	2
309	A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates, 2003, 29, 911-920.	2.7	2
310	Simulation of the structure of organosilane film coatings. Molecular Simulation, 2006, 32, 1095-1101.	2.0	2
311	Catalysis: experimental and computational. Annual Reports on the Progress of Chemistry Section B, 2006, 102, 325.	0.9	2
312	Catalysis: experimental and computational. Annual Reports on the Progress of Chemistry Section B, 2007, 103, 294.	0.9	2
313	Catalyst design from theory to practice: general discussion. Faraday Discussions, 2016, 188, 279-307.	3.2	2
314	The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science and Technology, 2017, 7, 1433-1439.	4.1	2
315	The interaction of CO with a copper(ii) chloride oxy-chlorination catalyst. Faraday Discussions, 2021, 229, 318-340.	3.2	2
316	Density Functional Theory Study of the Partial Oxidation of Methane to Methanol on Au and Pd Surfaces. Journal of Physical Chemistry C, 2021, 125, 18770-18785.	3.1	2
317	The formation of methanol from glycerol bio-waste over doped ceria-based catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200059.	3.4	2
318	The Effect of Sulfoxide Loadings on the Selectivity and Activity of Zeolite Y for Dehydration Reactions: Stability and Structure of Dithiane oxide in Zeolite Y. Studies in Surface Science and Catalysis, 1994, , 1611-1616.	1.5	1
319	Gradient-based fitting of empirical potentials in the presence of a distributed-multipole electrostatic model. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 127-138.	0.6	1
320	Observation of High Enantioselectivity for the Gas Phase Hydrogenation of Methyl Pyruvate Using Supported Pt Catalysts Pre-Modified with Cinchonidine ChemInform, 2003, 34, no.	0.0	1
321	Catalytic aziridination and epoxidation of alkenes using modified microporous and mesoporous materials. Special Publication - Royal Society of Chemistry, 2007, , 94-103.	0.0	1
322	Theory: Periodic Electronic Structure Calculations. , 0, , 323-389.		1
323	Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions, 2018, 208, 575-593.	3.2	1
324	Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H ₂ WO ₄ , H ₃ PO ₄ and H ₂ O ₂ : a route for upgrading heavy oil fractions. New Journal of Chemistry, 2021, 45, 13885-13892.	2.8	1

#	Article	IF	CITATIONS
325	Investigating the Effects of Surface Adsorbates on Gold and Palladium Deposition on Carbon. Topics in Catalysis, 0, , 1.	2.8	1
326	Carrier recombination in polydiacetylenes the scaling with sample size. Synthetic Metals, 1991, 41, 243.	3.9	0
327	Cover Picture: On-Off Porosity Switching in a Molecular Organic Solid (Angew. Chem. Int. Ed. 3/2011). Angewandte Chemie - International Edition, 2011, 50, 555-555.	13.8	0
328	Selective Oxidation of Alkyl-Substituted Polyaromatics Using Ruthenium-Ion-Catalyzed Oxidation. Chemistry - A European Journal, 2015, 21, 4169-4169.	3.3	0
329	Electron Microscopy Informed Catalyst Design. Microscopy and Microanalysis, 2019, 25, 2282-2283.	0.4	0
330	Theory: general discussion. Faraday Discussions, 2021, 229, 131-160.	3.2	0
331	Keto-enol isomerism on transition metal surfaces, a density functional theory study. Special Publication - Royal Society of Chemistry, 2007, , 247-252.	0.0	0