Mattéo Elia Mangoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6650628/publications.pdf

Version: 2024-02-01

82 papers 5,102 citations

35 h-index 91884 69 g-index

92 all docs 92 docs citations

times ranked

92

4619 citing authors

#	Article	IF	CITATIONS
1	L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells. Cells, 2022, 11, 1114.	4.1	22
2	Pharmacologic Approach to Sinoatrial Node Dysfunction. Annual Review of Pharmacology and Toxicology, 2021, 61, 757-778.	9.4	29
3	A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 2021, 18, 801-810.	0.7	46
4	Genetic Complexity of Sinoatrial Node Dysfunction. Frontiers in Genetics, 2021, 12, 654925.	2.3	25
5	Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circulation Research, 2021, 129, e1-e20.	4.5	23
6	Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. Progress in Biophysics and Molecular Biology, 2021, 166, 61-85.	2.9	16
7	The funny current in genetically modified mice. Progress in Biophysics and Molecular Biology, 2021, 166, 39-50.	2.9	7
8	ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace, 2021, 23, 1795-1814.	1.7	24
9	Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Frontiers in Cardiovascular Medicine, 2021, 8, 662410.	2.4	8
10	A Novel Computational Model of Pacemaker Activity in the Mouse Atrioventricular Node Cell., 2021,,.		0
11	Functional Impact of BeKm-1, a High-Affinity hERG Blocker, on Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7167.	4.1	5
12	Inhibition of G protein-gated K+ channels by tertiapin-Q rescues sinus node dysfunction and atrioventricular conduction in mouse models of primary bradycardia. Scientific Reports, 2020, 10, 9835.	3.3	13
13	Concomitant genetic ablation of L-type Cav1.3 ($\hat{l}\pm1D$) and T-type Cav3.1 ($\hat{l}\pm1G$) Ca2+ channels disrupts heart automaticity. Scientific Reports, 2020, 10, 18906.	3.3	33
14	Channelopathies of voltage-gated L-type Cav1.3 $\hat{l}\pm 1D$ and T-type Cav3.1 $\hat{l}\pm 1G$ Ca2+ channels in dysfunction of heart automaticity. Pflugers Archiv European Journal of Physiology, 2020, 472, 817-830.	2.8	23
15	Genetic Ablation of G Protein-Gated Inwardly Rectifying K+ Channels Prevents Training-Induced Sinus Bradycardia. Frontiers in Physiology, 2020, 11, 519382.	2.8	9
16	Maurocalcin and its analog MCaE12A facilitate Ca2+ mobilization in cardiomyocytes. Biochemical Journal, 2020, 477, 3985-3999.	3.7	0
17	A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. ELife, 2018, 7, .	6.0	43
18	Mechanism of Sinoatrial Node Dysfunction in a RyR 2 R420Q Mouse Model Ofcatecholaminergic Polymorphic Ventricular Tachycardia. Biophysical Journal, 2017, 112, 541a.	0.5	0

#	Article	IF	Citations
19	CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na+ current. Scientific Reports, 2017, 7, 7869.	3.3	32
20	Clock-dependent and system-driven oscillators interact in the suprachiasmatic nuclei to pace mammalian circadian rhythms. PLoS ONE, 2017, 12, e0187001.	2.5	13
21	RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism. JCI Insight, 2017, 2, .	5.0	24
22	Rescuing cardiac automaticity in Lâ€ŧype Cav1.3 channelopathies and beyond. Journal of Physiology, 2016, 594, 5869-5879.	2.9	20
23	Desmosomes and sino-atrial dysfunction. Cardiovascular Research, 2016, 111, 167-168.	3.8	O
24	Comment on: 'Homozygous knockout of the piezol gene in the zebrafish is not associated with anemia. Haematologica, 2016, 101, e38-e38.	3.5	4
25	G protein-gated <i>I</i> _{<i>KACh</i>} channels as therapeutic targets for treatment of sick sinus syndrome and heart block. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E932-41.	7.1	47
26	L-type Ca _v 1.3 channels regulate ryanodine receptor-dependent Ca ²⁺ release during sino-atrial node pacemaker activity. Cardiovascular Research, 2016, 109, 451-461.	3.8	88
27	Functional role of voltage gated Ca2+ channels in heart automaticity. Frontiers in Physiology, 2015, 6, 19.	2.8	109
28	Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica, 2014, 99, 70-75.	3.5	119
29	P118Cardiac arrhythmia induced by genetic silencing of funny (f) channels is rescued by Girk4 inactivation. Cardiovascular Research, 2014, 103, S20.5-S21.	3.8	O
30	P666Heart rate control protects against ischemia-reperfusion injury. Cardiovascular Research, 2014, 103, S121.5-S122.	3.8	0
31	T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Archiv European Journal of Physiology, 2014, 466, 791-799.	2.8	48
32	Cardiac arrhythmia induced by genetic silencing of  funny' (f) channels is rescued by GIRK4 inactivation. Nature Communications, 2014, 5, 4664.	12.8	70
33	0252: Bradycardia and arrhythmia caused by cardiac-specific suppression of the "funny―(If) current are rescued by Girk. Archives of Cardiovascular Diseases Supplements, 2014, 6, 33.	0.0	O
34	Cav1.3 Channels and Sino-Atrial Node Dysfunction., 2014,, 239-254.		0
35	Timing of Myocardial <i>Trpm7</i> Deletion During Cardiogenesis Variably Disrupts Adult Ventricular Function, Conduction, and Repolarization. Circulation, 2013, 128, 101-114.	1.6	94
36	The G-protein–gated K+ channel, <i>IKACh</i> , is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. Journal of General Physiology, 2013, 142, 113-126.	1.9	69

#	Article	IF	Citations
37	Ion channel-kinase TRPM <i>7</i> is required for maintaining cardiac automaticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3037-46.	7.1	99
38	<i>piezo2b</i> Regulates Vertebrate Light Touch Response. Journal of Neuroscience, 2013, 33, 17089-17094.	3.6	75
39	Paradoxical Effect of Increased Diastolic Ca ²⁺ Release and Decreased Sinoatrial Node Activity in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2012, 126, 392-401.	1.6	77
40	Distinct localization and modulation of Ca _v 1.2 and Ca _v 1.3 Lâ€type Ca ²⁺ channels in mouse sinoatrial node. Journal of Physiology, 2012, 590, 6327-6341.	2.9	55
41	Génération et régulation du rythme cardiaque. Archives Des Maladies Du Coeur Et Des Vaisseaux - Pratique, 2012, 2012, 31-35.	0.0	2
42	Cav1.3 L-Type Calcium Channels-Mediated Ryanodine Receptor Dependent Calcium Release Controls Heart Rate. Biophysical Journal, 2011, 100, 567a.	0.5	5
43	Biophysical Properties of a Human Disease-Causing Mutation in CaV1.3 L-Type Calcium Channels. Biophysical Journal, 2011, 100, 570a.	0.5	O
44	Killing the primary heart pacemaker. Cardiovascular Research, 2011, 90, 3-4.	3.8	1
45	Loss of Cav1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nature Neuroscience, 2011, 14, 77-84.	14.8	265
46	Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels. Journal of Biological Chemistry, 2011, 286, 42736-42748.	3.4	118
47	Pacemaker activity and ionic currents in mouse atrioventricular node cells. Channels, 2011, 5, 241-250.	2.8	34
48	Functional roles of Ca $<$ sub $>$ v $<$ /sub $>$ 1.3, Ca $<$ sub $>$ v $<$ /sub $>$ 3.1 and HCN channels in automaticity of mouse atrioventricular cells. Channels, 2011, 5, 251-261.	2.8	80
49	Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate. Cardiovascular Research, 2010, 85, 45-55.	3.8	38
50	Pacemaker Cells of the Atrioventricular Node are CaV1.3 Dependent Oscillators. Biophysical Journal, 2010, 98, 339a.	0.5	2
51	Identification of Potential Pharmacological Targets by Analysis of the Comprehensive G Protein-Coupled Receptor Repertoire in the Four Cardiac Chambers. Molecular Pharmacology, 2009, 75, 1108-1116.	2.3	29
52	Control of heart rate by cAMP sensitivity of HCN channels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12189-12194.	7.1	102
53	Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 2008, 88, 919-982.	28.8	512
54	Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Developmental Biology, 2007, 303, 740-753.	2.0	70

#	Article	IF	Citations
55	Chronic heart rate reduction remodels ion channel transcripts in the mouse sinoatrial node but not in the ventricle. Physiological Genomics, 2006, 24, 4-12.	2.3	38
56	Physiological and Pharmacological Insights into the Role of Ionic Channels in Cardiac Pacemaker Activity. Cardiovascular & Hematological Disorders Drug Targets, 2006, 6, 169-190.	0.7	12
57	Voltage-dependent calcium channels and cardiac pacemaker activity: From ionic currents to genes. Progress in Biophysics and Molecular Biology, 2006, 90, 38-63.	2.9	99
58	I _f Current Inhibition: Cellular Basis and Physiology. , 2006, 43, 17-30.		7
59	Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking Ca V $3.1\hat{l}\pm 1G$ T-Type Calcium Channels. Circulation Research, 2006, 98, 1422-1430.	4.5	275
60	lonic channels underlying cardiac automaticity: new insights from genetically-modified mouse strains. Archives Des Maladies Du Coeur Et Des Vaisseaux, 2006, 99, 856-61.	0.3	2
61	Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. Journal of Physiology, 2005, 562, 223-234.	2.9	282
62	Calcium Channels in the Heart., 2005,, 309-325.		0
63	Adenosine receptors, heart rate, and cardioprotection. Cardiovascular Research, 2004, 62, 447-449.	3.8	7
64	A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1757-H1766.	3.2	74
65	Architectural and functional asymmetry of the His–Purkinje system of the murine heart. Cardiovascular Research, 2004, 63, 77-86.	3 . 8	171
66	Dissecting the functional role of different isoforms of the L-type Ca2+ channel. Journal of Clinical Investigation, 2004, 113, 1382-1384.	8.2	16
67	Dissecting the functional role of different isoforms of the L-type Ca2+ channel. Journal of Clinical Investigation, 2004, 113, 1382-1384.	8.2	11
68	Functional role of L-type Ca $\langle sub \rangle v \langle sub \rangle$ 1.3 Ca $\langle sup \rangle 2 + \langle sup \rangle$ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5543-5548.	7.1	428
69	Cyclosporin A increases basal intracellular calcium and calcium responses to endothelin and vasopressin in human coronary myocytes. FEBS Letters, 2001, 493, 57-62.	2.8	17
70	Inhibition of T-Type and L-Type Calcium Channels by Mibefradil: Physiologic and Pharmacologic Bases of Cardiovascular Effects. Journal of Cardiovascular Pharmacology, 2001, 37, 649-661.	1.9	56
71	Properties of the hyperpolarization-activated current (If) in isolated mouse sino-atrial cells. Cardiovascular Research, 2001, 52, 51-64.	3.8	152
72	Facilitation of the L-type calcium current in rabbit sino-atrial cells: effect on cardiac automaticity. Cardiovascular Research, 2000, 48, 375-392.	3.8	29

#	Article	IF	CITATIONS
73	Evidence for tetrodotoxin-sensitive sodium currents in primary cultured myocytes from human, pig and rabbit arteries. Pflugers Archiv European Journal of Physiology, 2000, 440, 149.	2.8	1
74	Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Letters, 1996, 383, 93-98.	2.8	122
75	Modulation of the $\hat{l}\pm 1A$ Ca2+channel by \hat{l}^2 subunits at physiological Ca2+concentration. FEBS Letters, 1996, 391, 232-237.	2.8	17
76	Coexpression of the \hat{I}^2 2 subunit does not induce voltage-dependent facilitation of the class C L-type Ca channel. Pflugers Archiv European Journal of Physiology, 1996, 431, 771-774.	2.8	1
77	Synthesis and Solution Structure of the Antimicrobial Peptide Protegrin-1. FEBS Journal, 1996, 237, 575-583.	0.2	175
78	Modulation of single hyperpolarizationâ€activated channels (i(f)) by cAMP in the rabbit sinoâ€atrial node Journal of Physiology, 1994, 474, 473-482.	2.9	154
79	An isoform of the cGMP-gated retinal photoreceptor channel gene expressed in the sinoatrial node (pacemaker) region of rabbit heart. Biochemical Society Transactions, 1993, 21, 119S-119S.	3.4	46
80	Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. Journal of Neurophysiology, 1993, 69, 2129-2136.	1.8	235
81	Block of the cardiac pacemaker current (If) in the rabbit sino-atrial node and in canine Purkinje fibres by 9-amino-1,2,3,4-tetrahydroacridine. Pflugers Archiv European Journal of Physiology, 1991, 417, 611-615.	2.8	14
82	Intracellular calcium does not directly modulate cardiac pacemaker (if) channels. Pflugers Archiv European Journal of Physiology, 1991, 419, 662-664.	2.8	32