Paulina Pavez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6650148/publications.pdf Version: 2024-02-01

ΔΑΙΙΙΙΝΑ ΔΑΛΕΖ

#	Article	IF	CITATIONS
1	Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II) and Iron(III) Ions and Their Application in Bio-Imaging. Sensors, 2014, 14, 1358-1371.	3.8	76
2	Mechanisms of Degradation of Paraoxon in Different Ionic Liquids. Journal of Organic Chemistry, 2013, 78, 9670-9676.	3.2	74
3	Nucleophilic substitution reactions of diethyl 4â€nitrophenyl phosphate triester: Kinetics and mechanism. International Journal of Chemical Kinetics, 2011, 43, 708-714.	1.6	48
4	Dual Nucleophilic Substitution Reactions of O,Oâ€Diethyl 2,4â€dinitrophenyl Phosphate and Thionophosphate Triesters. International Journal of Chemical Kinetics, 2013, 45, 202-211.	1.6	38
5	Kinetics and Mechanism of the Phenolysis of Asymmetric Diaryl Carbonates. Journal of Organic Chemistry, 2002, 67, 4494-4497.	3.2	34
6	Concerted Mechanisms of the Reactions of Methyl Aryl Carbonates with Substituted Phenoxide Ions. Journal of Organic Chemistry, 2001, 66, 3129-3132.	3.2	32
7	Toward a p <i>K</i> _a Scale of N-base Amines in Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 4412-4418.	2.6	30
8	Photophysics and Photochemical Studies of 1,4-Dihydropyridine Derivatives. Photochemistry and Photobiology, 2007, 83, 722-729.	2.5	29
9	The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study. Tetrahedron Letters, 2011, 52, 6606-6609.	1.4	28
10	Ionic liquids: anion effect on the reaction of O,O-diethyl O-(2,4-dinitrophenyl) phosphate triester with piperidine. New Journal of Chemistry, 2015, 39, 1953-1959.	2.8	25
11	Effect of amino acid addition on the micelle formation of the surfaceâ€active ionic liquid 1â€tetradecylâ€3â€methylimidazolium bromide in aqueous solution. Journal of Physical Organic Chemistry, 2019, 32, e3814.	1.9	24
12	Dephosphorylation Reactions of Mono-, Di-, and Triesters of 2,4-Dinitrophenyl Phosphate with Deferoxamine and Benzohydroxamic Acid. Journal of Organic Chemistry, 2012, 77, 10907-10913.	3.2	22
13	Concerted Mechanisms of the Reactions of EthylS-Aryl Thiocarbonates with Substituted Phenoxide Ions. Journal of Organic Chemistry, 1999, 64, 2310-2313.	3.2	20
14	Influence of the ionic liquid on the rate and the mechanism of reaction of p-nitrophenyl acetate with secondary alicyclic amines. New Journal of Chemistry, 2013, 37, 3281.	2.8	19
15	Reaction mechanisms in ionic liquids: the kinetics and mechanism of the reaction of O,O-diethyl (2,4-dinitrophenyl) phosphate triester with secondary alicyclic amines. Organic and Biomolecular Chemistry, 2016, 14, 1421-1427.	2.8	19
16	Green Solvents as a Promising Approach to Degradation of Organophosphorate Pesticides. ACS Sustainable Chemistry and Engineering, 2016, 4, 7023-7031.	6.7	18
17	Kinetics and mechanism of the aminolysis of bis(4â€nitrophenyl) carbonate and <i>O</i> â€(4â€nitropheny) Sâ€(4â€nitrophenyl) thio and dithiocarbonate. Journal of Physical Organic Chemistry, 2014, 27, 265-268.	1.9	17
18	Choline [Amino Acid] Ionic Liquid/Water Mixtures: A Triple Effect for the Degradation of an Organophosphorus Pesticide. ACS Omega, 2020, 5, 26562-26572.	3.5	17

PAULINA PAVEZ

#	Article	IF	CITATIONS
19	Photophysics and Photochemistry of Nalidixic Acidâ€. Photochemistry and Photobiology, 2006, 82, 254.	2.5	15
20	Photophysics and Photochemical Studies of the Vitamin B6 Group and Related Derivatives. Photochemistry and Photobiology, 2010, 86, 39-46.	2.5	13
21	Nucleophilic reactivity of biothiols toward coumarinâ€based derivatives containing a chalcone moiety. Journal of Physical Organic Chemistry, 2012, 25, 946-952.	1.9	13
22	Dual function of amino acid ionic liquids (Bmim[AA]) on the degradation of the organophosphorus pesticide, Paraoxon®. Organic and Biomolecular Chemistry, 2018, 16, 7446-7453.	2.8	13
23	Reaction Mechanism in Ionic Liquids: Kinetics and Mechanism of the Aminolysis of 4-Nitrophenyl Acetate. International Journal of Chemical Kinetics, 2016, 48, 337-343.	1.6	11
24	Nucleophilic Neutralization of Organophosphates: Lack of Selectivity or Plenty of Versatility?. Chemical Record, 2021, 21, 2638-2665.	5.8	11
25	Kinetic investigation of the phenolysis of phenyl 4-nitrophenyl and phenyl 2,4-dinitrophenyl carbonates. Perkin Transactions II RSC, 2001, , 2351-2354.	1.1	10
26	Kinetics and Mechanism of the Benzenethiolysis of 2,4-Dinitrophenyl and 2,4,6-Trinitrophenyl Methyl Carbonates andS-(2,4-Dinitrophenyl) andS-(2,4,6-Trinitrophenyl) Ethyl Thiolcarbonates. Journal of Organic Chemistry, 2003, 68, 3640-3645.	3.2	10
27	UN sustainable development goals: How can sustainable/green chemistry contribute?. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 154-157.	5.9	10
28	Kinetics and Mechanism of the Benzenethiolysis ofO-EthylS-(2,4-Dinitrophenyl) andO-EthylS-(2,4,6-Trinitrophenyl) Dithiocarbonates andO-MethylO-(2,4-Dinitrophenyl) Thiocarbonate. Journal of Organic Chemistry, 2003, 68, 9034-9039.	3.2	8
29	Kinetic Study of the Phenolysis ofO-Methyl andO-PhenylO-2,4-Dinitrophenyl Thiocarbonates andO-Ethyl 2,4-Dinitrophenyl Dithiocarbonate. Journal of Organic Chemistry, 2003, 68, 6192-6196.	3.2	8
30	Phenolysis of diaryl thiolcarbonates and thionocarbonates. Journal of Physical Organic Chemistry, 2009, 22, 455-459.	1.9	8
31	Kinetic and theoretical study on nucleofugality in the phenolysis of 3-nitrophenyl and 4-nitrophenyl 4-cyanophenyl thionocarbonates. Chemical Physics Letters, 2013, 572, 130-135.	2.6	8
32	(E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles as efficient Michael acceptors for cysteine: Real application in biological imaging. Sensors and Actuators B: Chemical, 2014, 193, 391-399.	7.8	8
33	Experimental and theoretical studies on the nucleofugality ratio in the aminolysis reactions of O-(4-cyanophenyl) O-(3-nitrophenyl) thionocarbonate with amines in aqueous ethanol. New Journal of Chemistry, 2017, 41, 9954-9962.	2.8	8
34	Efficient Nucleophilic Degradation of an Organophosphorus Pesticide "Diazinon―Mediated by Green Solvents and Microwave Heating. Frontiers in Chemistry, 2018, 6, 669.	3.6	8
35	Structure and Medium Effects on the Photochemical Behavior of Nonfluorinated Quinolone Antibioticsâ€. Photochemistry and Photobiology, 2007, 83, 511-519.	2.5	7
36	Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Letters, 2015, 56, 2437-2440.	1.4	6

Paulina Pavez

#	Article	IF	CITATIONS
37	Substituent effects on reactivity of 3-cinnamoylcoumarins with thiols of biological interest. RSC Advances, 2014, 4, 697-704.	3.6	5
38	Microwave-assisted nucleophilic degradation of organophosphorus pesticides in propylene carbonate. Organic and Biomolecular Chemistry, 2020, 18, 7868-7875.	2.8	5
39	The effect of imidazolium salts with amino acids as counterions on the reactivity of 4-nitrophenyl acetate: A kinetic study. Journal of Molecular Liquids, 2020, 310, 113206.	4.9	5
40	Reactivity and selectivity of the reaction of O,O-diethyl 2,4-dinitrophenyl phosphate and thionophosphate with thiols of low molecular weight. Organic and Biomolecular Chemistry, 2016, 14, 6479-6486.	2.8	4
41	Phenolysis and benzenethiolysis reactions of carbonyl and thiocarbonyl compounds from the perspective of the HSAB principle. Computational and Theoretical Chemistry, 2007, 811, 91-96.	1.5	3
42	Characterization of Anionic Reverse Micelles Formulated on Biobased Solvents as Replacing Conventional Nonpolar Organic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 5478-5484.	6.7	3
43	Cucurbit[7]uril limits the binding of coumarin bearing alkyl-acetoacetate with mercury and stimulates the desulphurisation reaction of its sulphur analog. Supramolecular Chemistry, 2020, 32, 605-613.	1.2	3
44	Non-traditional solvent effects in organic reactions. Physical Chemistry Chemical Physics, 2021, 23, 26028-26029.	2.8	3
45	Nucleofugality hierarchy, in the aminolysis reaction of 4-cyanophenyl 4-nitrophenyl carbonate and thionocarbonate. Experimental and theoretical study. New Journal of Chemistry, 2021, 45, 11495-11505.	2.8	2
46	An efficient and eco-friendly method for the thiol-Michael addition in aqueous solutions using amino acid ionic liquids (AAILs) as organocatalysts. Pure and Applied Chemistry, 2020, 92, 97-106.	1.9	1
47	Physical organic chemistry: New Latin American conference at Concón, Región de ValparaÃso, Chile, 2017. Journal of Physical Organic Chemistry, 2019, 32, e3891.	1.9	0