Hajime Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6650063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mimicking Natural Photosynthesis: Solar to Renewable H ₂ Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews, 2018, 118, 5201-5241.	23.0	748
2	Layered Perovskite Oxychloride Bi ₄ NbO ₈ Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. Journal of the American Chemical Society, 2016, 138, 2082-2085.	6.6	364
3	Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analysis. Journal of the American Chemical Society, 2017, 139, 18725-18731.	6.6	144
4	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
5	Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 9752-9762.	6.6	94
6	Flux Synthesis of Layered Oxyhalide Bi ₄ NbO ₈ Cl Photocatalyst for Efficient <i>Z</i> -Scheme Water Splitting Under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 5642-5650.	4.0	89
7	Lead Bismuth Oxyhalides PbBiO ₂ X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 2018, 30, 5862-5869.	3.2	82
8	Hydride in BaTiO _{2.5} H _{0.5} : A Labile Ligand in Solid State Chemistry. Journal of the American Chemical Society, 2015, 137, 15315-15321.	6.6	69
9	Conduction Band Control of Oxyhalides with a Triple-Fluorite Layer for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 2491-2499.	6.6	52
10	Band Engineering of Double-Layered Sillén–Aurivillius Perovskite Oxychlorides for Visible-Light-Driven Water Splitting. Chemistry of Materials, 2019, 31, 3419-3429.	3.2	50
11	Two-step photocatalytic water splitting into H ₂ and O ₂ using layered metal oxide KCa ₂ Nb ₃ O ₁₀ and its derivatives as O ₂ -evolving photocatalysts with IO ₃ <fr></fr> sup>a^*/I ^{a^*} or Fe ³⁺ /Fe ²⁺	2.1	46
12	Layered Perovskite Oxyiodide with Narrow Band Gap and Long Lifetime Carriers for Water Splitting Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8446-8453.	6.6	46
13	Highly Dispersed RuO ₂ Hydrates Prepared via Simple Adsorption as Efficient Cocatalysts for Visible-Light-Driven Z-Scheme Water Splitting with an IO ₃ [–] /I [–] Redox Mediator. ACS Catalysis, 2017, 7, 4336-4343.	5.5	42
14	Tungstic acids H ₂ WO ₄ and H ₄ WO ₅ as stable photocatalysts for water oxidation under visible light. Journal of Materials Chemistry A, 2017, 5, 10280-10288.	5.2	33
15	Two-Dimensional Metal–Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting. ACS Catalysis, 2022, 12, 3881-3889.	5.5	32
16	New rare earth hafnium oxynitride perovskites with photocatalytic activity in water oxidation and reduction. Chemical Communications, 2018, 54, 1525-1528.	2.2	31
17	Photoconductivity–Lifetime Product Correlates Well with the Photocatalytic Activity of Oxyhalides Bi ₄ TaO ₈ Cl and PbBiO ₂ Cl: An Approach to Boost Their O ₂ Evolution Rates. ACS Energy Letters, 2019, 4, 1572-1578.	8.8	31
18	Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. Journal of Materials Chemistry A, 2016, 4, 14444-14452.	5.2	29

HAJIME SUZUKI

#	Article	IF	CITATIONS
19	Exploring the Relationship between Effective Mass, Transient Photoconductivity, and Photocatalytic Activity of Sr _{<i>x</i>} Pb _{1–<i>x</i>} BiO ₂ Cl (<i>x</i> = 0–1) Oxyhalides. Chemistry of Materials, 2020, 32, 4166-4173.	3.2	24
20	Synthesis, band structure and photocatalytic properties of SillA©n〠Aurivillius oxychlorides BaBi ₅ Ti ₃ O ₁₄ Cl, Ba ₂ Bi ₅ Ti ₄ O ₁₇ Cl and Ba ₃ Bi ₅ Ti ₅ O _{O₂₀Cl with triple-, quadruple- and}	5.2	22
21	quintuple-perovskite layers. Journal of Materials Chemistry A, 2021, 9, 8332-8340. Z-Scheme Overall Water Splitting Using Zn <i>_x</i> Cd _{1–<i>xx</i>} Se Particles Coated with Metal Cyanoferrates as Hydrogen Evolution Photocatalysts. ACS Catalysis, 2021, 11, 8004-8014.	5.5	21
22	Supramolecular photocatalysts fixed on the inside of the polypyrrole layer in dye sensitized molecular photocathodes: application to photocatalytic CO ₂ reduction coupled with water oxidation. Chemical Science, 2021, 12, 13216-13232.	3.7	20
23	Improved visible-light activity of nitrogen-doped layered niobate photocatalysts by NH3-nitridation with KCl flux. Applied Catalysis B: Environmental, 2018, 232, 49-54.	10.8	19
24	Z-scheme Water Splitting into H2 and O2 Using Tungstic Acid as an Oxygen-evolving Photocatalyst under Visible Light Irradiation. Chemistry Letters, 2015, 44, 1134-1136.	0.7	17
25	Manipulation of charge carrier flow in Bi ₄ NbO ₈ Cl nanoplate photocatalyst with metal loading. Chemical Science, 2022, 13, 3118-3128.	3.7	17
26	Complex Photoconductivity Reveals How the Nonstoichiometric Sr/Ti Affects the Charge Dynamics of a SrTiO3 Photocatalyst. Journal of Physical Chemistry Letters, 2019, 10, 1986-1991.	2.1	16
27	Fe/Ru Oxide as a Versatile and Effective Cocatalyst for Boosting Z-Scheme Water-Splitting: Suppressing Undesirable Backward Electron Transfer. ACS Applied Materials & Interfaces, 2019, 11, 45606-45611.	4.0	11
28	Triple-layered Sillén–Aurivillius Perovskite Oxychloride Bi ₅ PbTi ₃ O ₁₄ Cl as a Visible-light-responsive Photocatalyst for Water Splitting. Chemistry Letters, 2020, 49, 978-981.	0.7	11
29	PbBi ₃ O ₄ X ₃ (X = Cl, Br) with Single/Double Halogen Layers as a Photocatalyst for Visible-Light-Driven Water Splitting: Impact of a Halogen Layer on the Band Structure and Stability. Chemistry of Materials, 2021, 33, 9580-9587.	3.2	11
30	A new lead-free Sillén–Aurivillius oxychloride Bi5SrTi3O14Cl with triple-perovskite layers for photocatalytic water splitting under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113095.	2.0	8
31	Earth-abundant iron(<scp>iii</scp>) species serves as a cocatalyst boosting the multielectron reduction of IO ₃ ^{â^} /I ^{â^} redox shuttle in Z-scheme photocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 11718-11725.	5.2	8
32	Controlling the carrier density in niobium oxynitride BaNbO ₂ N <i>via</i> cation doping for efficient photoelectrochemical water splitting under visible light. Sustainable Energy and Fuels, 2021, 5, 6181-6188.	2.5	6
33	The first example of an oxide semiconductor photocatalyst consisting of a heptavalent cation: visible-light-induced water oxidation on M ₃ ReO ₈ . Journal of Materials Chemistry A, 2018, 6, 1991-1994.	5.2	5
34	A pressure-assisted low temperature sintering of particulate bismuth chalcohalides BiSX (X = Br, I) for fabricating efficient photoelectrodes with porous structures. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 413, 113264.	2.0	5
35	Bi4AO6Cl2 (A = Ba, Sr, Ca) with Double and Triple Fluorite Layers for Visible-Light Water Splitting. Inorganic Chemistry, 2021, 60, 15667-15674.	1.9	4
36	Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113753.	2.0	4

HAJIME SUZUKI

#	Article	IF	CITATIONS
37	Domain observation in the visible-light photocatalyst Bi ₄ NbO ₈ Br with the layered perovskite structure. Applied Physics Express, 2020, 13, 091004.	1.1	3
38	Visible-light-induced hydrogen evolution from water on hybrid photocatalysts consisting of synthetic chlorophyll-a derivatives with a carboxy group in the 20-substituent adsorbed on semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113750.	2.0	3
39	Visible-Light-Responsive Oxyhalide PbBiO2Cl Photoelectrode: On-Site Flux Synthesis on a Fluorine-Doped Tin Oxide Electrode. ACS Applied Materials & Interfaces, 2021, 13, 5176-5183.	4.0	2
40	Improved water oxidation activity of a Sillén SrBi ₃ O ₄ Cl ₃ photocatalyst by flux method with an appropriate binary-component molten salt. Sustainable Energy and Fuels, 2022, 6, 3263-3270.	2.5	1