Yi-Da Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6649767/publications.pdf

Version: 2024-02-01

21521 26610 114 13,712 135 56 citations h-index g-index papers 136 136 136 13072 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	18.7	2,723
2	Atomically Dispersed Binary Coâ€Ni Sites in Nitrogenâ€Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1905622.	11.1	537
3	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	7.2	500
4	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nature Energy, 2020, 5, 440-449.	19.8	430
5	NiCo 2 S 4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017, 31, 541-550.	8.2	365
6	Identifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @gâ€C ₃ N ₄ â€CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	11.1	315
7	Ultrathin Co ₃ O ₄ Layers with Large Contact Area on Carbon Fibers as Highâ€Performance Electrode for Flexible Zinc–Air Battery Integrated with Flexible Display. Advanced Energy Materials, 2017, 7, 1700779.	10.2	309
8	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	11.1	302
9	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	10.2	286
10	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10, 4816-4824.	2.8	256
11	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	11.1	251
12	Sub-3 nm Co ₃ O ₄ Nanofilms with Enhanced Supercapacitor Properties. ACS Nano, 2015, 9, 1730-1739.	7.3	248
13	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	10.2	243
14	Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy, 2019, 56, 454-462.	8.2	212
15	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	11.1	206
16	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nature Communications, 2019, 10, 4767.	5.8	199
17	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 7245-7250.	7.2	196
18	Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO ₂ rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 5733-5739.	5.2	182

#	Article	IF	Citations
19	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	11.1	172
20	Latticeâ€Strain Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
21	Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 2016, 654, 163-170.	2.8	156
22	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	10.2	156
23	Morphology-Controllable Synthesis of Zn–Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc–Air Batteries and Water Electrolysis. ACS Applied Materials & Interfaces, 2017, 9, 12574-12583.	4.0	154
24	Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale, 2019, 11, 5646-5654.	2.8	148
25	Dislocationâ€Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	11.1	148
26	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Transactions of Tianjin University, 2020, 26, 92-103.	3.3	146
27	Highly Active and Durable Singleâ€Atom Tungstenâ€Doped NiS _{0.5} Se _{0.5} Nanosheet @ NiS _{0.5} Se _{0.5} Nanorod Heterostructures for Water Splitting. Advanced Materials, 2022, 34, e2107053.	11.1	136
28	Clarifying the Controversial Catalytic Performance of Co(OH) ₂ and Co ₃ O ₄ for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries. ACS Applied Materials & Dr. Interfaces, 2017, 9, 22694-22703.	4.0	121
29	Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy, 2017, 39, 101-110.	8.2	120
30	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x à‰¤i) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Diterfaces, 2018, 10, 13675-13684.	4.0	116
31	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 5413-5418.	1.6	106
32	NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy, 2017, 42, 353-362.	8.2	104
33	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched Coï₺¿Nĭ₺¿C Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	5.6	104
34	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€Splitting Performance. Small, 2018, 14, e1803666.	5.2	100
35	Ultrathin Co ₃ O ₄ nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc–air batteries. Nanoscale, 2017, 9, 8623-8630.	2.8	90
36	Shape-Controlled Synthesis of Palladium Single-Crystalline Nanoparticles: The Effect of HCl Oxidative Etching and Facet-Dependent Catalytic Properties. Chemistry of Materials, 2014, 26, 1213-1218.	3.2	86

#	Article	IF	CITATIONS
37	Highâ€Temperature Shock Enabled Nanomanufacturing for Energyâ€Related Applications. Advanced Energy Materials, 2020, 10, 2001331.	10.2	86
38	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Applied Materials & Los Replied Materials & Los Replie	4.0	84
39	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 11060-11068.	5.2	83
40	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie - International Edition, 2020, 59, 18463-18467.	7.2	82
41	Carbonâ€based cathode materials for rechargeable zincâ€air batteries: From current collectors to bifunctional integrated air electrodes. , 2020, 2, 370-386.		82
42	Long-Shelf-Life Polymer Electrolyte Based on Tetraethylammonium Hydroxide for Flexible Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28909-28917.	4.0	81
43	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie - International Edition, 2021, 60, 7602-7606.	7.2	81
44	Atomically Dispersed Selenium Sites on Nitrogenâ€Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
45	Electrochemical Oxidation of Chlorine-Doped Co(OH) ₂ Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS Applied Materials & Samp; Interfaces, 2018, 10, 796-805.	4.0	79
46	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni ³⁺ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 23787-23793.	5.2	76
47	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	3.6	74
48	Rational Design and Spontaneous Sulfurization of NiCoâ€(oxy)Hydroxysulfides Nanosheets with Modulated Local Electronic Configuration for Enhancing Oxygen Electrocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	74
49	Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes. Applied Catalysis B: Environmental, 2019, 246, 202-210.	10.8	71
50	Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77, 105010.	8.2	70
51	In Situ Electrodeposition of Cobalt Sulfide Nanosheet Arrays on Carbon Cloth as a Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Amp; Interfaces, 2018, 10, 30433-30440.	4.0	69
52	Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries. Small, 2018, 14, e1702987.	5.2	68
53	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2106973.	11.1	68
54	Airâ€Assisted Transient Synthesis of Metastable Nickel Oxide Boosting Alkaline Fuel Oxidation Reaction. Advanced Energy Materials, 2020, 10, 2001397.	10.2	66

#	Article	IF	CITATIONS
55	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2021, 33, e2006461.	11.1	63
56	Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457.	5.2	61
57	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Science China Materials, 2020, 63, 249-257.	3.5	59
58	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. Nano-Micro Letters, 2020, 12, 162.	14.4	59
59	Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Science China Materials, 2014, 57, 13-25.	3.5	58
60	Engineering the Metal/Oxide Interface of Pd Nanowire@CuO <i>_x</i> Electrocatalysts for Efficient Alcohol Oxidation Reaction. Small, 2020, 16, e1904964.	5.2	58
61	Electrodeposition of alloys and compounds from high-temperature molten salts. Journal of Alloys and Compounds, 2017, 690, 228-238.	2.8	54
62	Interface engineering of NiS2/CoS2 nanohybrids as bifunctional electrocatalysts for rechargeable solid state Zn-air battery. Journal of Power Sources, 2019, 437, 226893.	4.0	54
63	Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Materials, 2019, 21, 69-76.	9.5	53
64	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	2.4	53
65	Controllable synthesis of Co2P nanorods as high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2018, 402, 345-352.	4.0	51
66	Multiple Twin Boundaryâ€Regulated Metastable Pd for Ethanol Oxidation Reaction. Advanced Energy Materials, 2022, 12, 2103505.	10.2	51
67	Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. Journal of Power Sources, 2018, 403, 82-89.	4.0	50
68	Millisecond Conversion of Photovoltaic Silicon Waste to Binderâ€Free High Silicon Content Nanowires Electrodes. Advanced Energy Materials, 2021, 11, 2102103.	10.2	48
69	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Science China Materials, 2019, 62, 1096-1104.	3.5	43
70	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	5.8	43
71	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	11.1	43
72	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. ACS Applied Materials & Interfaces, 2017, 9, 18856-18864.	4.0	39

#	Article	IF	CITATIONS
73	A one-step, clean, capping-agent-free electrochemical approach to prepare Pt nanoparticles with preferential (100) orientation and their high electrocatalytic activities. Electrochemistry Communications, 2015, 58, 6-10.	2.3	38
74	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8115-8123.	4.0	38
7 5	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Science China Materials, 2018, 61, 697-706.	3.5	37
76	Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten, 2020, 2, 109-133.	2.0	37
77	å³¼®çº³ç»"构过渡金属化å•̂物能æºè½¬åŒ–ç"μå,¬åŒ–å‰,ç"究进展. Science China Materials,	2021, 64	, 1- 26 .
78	Investigation of failure mechanism of rechargeable zinc–air batteries with poly(acrylic acid) alkaline gel electrolyte during discharge–charge cycles at different current densities. Chemical Engineering Journal, 2022, 429, 132331.	6.6	36
79	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	8.2	35
80	Regulated synthesis of Eutectic Ni3S2/NiS nanorods for quasi-solid-state hybrid supercapacitors with high energy density. Journal of Power Sources, 2021, 482, 228910.	4.0	34
81	Ultrafast Synthesis for Functional Nanomaterials. Cell Reports Physical Science, 2021, 2, 100302.	2.8	34
82	Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochimica Acta, 2014, 150, 146-150.	2.6	32
83	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 537-551.	1.7	32
84	Pyrite-Type CoS2 Nanoparticles Supported on Nitrogen-Doped Graphene for Enhanced Water Splitting. Frontiers in Chemistry, 2018, 6, 569.	1.8	32
85	Investigation of the Environmental Stability of Poly(vinyl alcohol)–KOH Polymer Electrolytes for Flexible Zinc–Air Batteries. Frontiers in Chemistry, 2019, 7, 678.	1.8	32
86	Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable Zincâ€lon Batteries. Batteries and Supercaps, 2021, 4, 60-71.	2.4	32
87	Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution. Electrochimica Acta, 2017, 258, 866-875.	2.6	31
88	Bimetallic Multi‣evel Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	5.2	31
89	Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 54833-54841.	4.0	30
90	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	3.0	29

#	Article	IF	Citations
91	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27765-27772.	4.0	28
92	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	1.6	28
93	Regulating metal active sites of atomically-thin nickel-doped spinel cobalt oxide toward enhanced oxygen electrocatalysis. Chemical Engineering Journal, 2022, 435, 134261.	6.6	28
94	Varied hydrogen evolution reaction properties of nickel phosphide nanoparticles with different compositions in acidic and alkaline conditions. Journal of Materials Science, 2017, 52, 804-814.	1.7	27
95	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	5.2	27
96	Porous Zinc Anode Design for Zn-air Chemistry. Frontiers in Chemistry, 2019, 7, 656.	1.8	26
97	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Dels, 2021, 35, 6483-6503.	2.5	26
98	Metal chalcogenides: An emerging material for electrocatalysis. APL Materials, 2021, 9, .	2.2	26
99	Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions. Journal of Materials Science and Technology, 2021, 81, 131-138.	5.6	24
100	Controlled Synthesis of Niâ€Doped MoS ₂ Hybrid Electrode for Synergistically Enhanced Waterâ€Splitting Process. Chemistry - A European Journal, 2020, 26, 4097-4103.	1.7	23
101	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	2.5	23
102	Surface/interface engineering of noble-metals and transition metal-based compounds for electrocatalytic applications. Journal of Materials Science and Technology, 2020, 38, 221-236.	5.6	23
103	Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting. Journal of Materials Science and Technology, 2020, 37, 154-160.	5.6	23
104	Dynamic stretching–electroplating metalâ€coated textile for a flexible and stretchable zinc–air battery. , 2022, 4, 867-877.		23
105	Toward Flexible and Wearable Zn–Air Batteries from Cotton Textile Waste. ACS Omega, 2019, 4, 19341-19349.	1.6	21
106	Metallic-State MoS ₂ Nanosheets with Atomic Modification for Sodium Ion Batteries with a High Rate Capability and Long Lifespan. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19894-19903.	4.0	20
107	Enhanced antibacterial properties of biocompatible titanium ⟨i>via⟨ i> electrochemically deposited Ag TiO⟨sub>2⟨ sub> nanotubes and chitosan–gelatin–Ag–ZnO complex coating. RSC Advances, 2019, 9, 4521-4529.	1.7	19
108	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	7.8	19

#	Article	IF	CITATIONS
109	Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, .	10.2	19
110	Hollow Co ₃ O ₄ microspheres with nano-sized shells: one-step large-scale synthesis, growth mechanism and supercapacitor properties. RSC Advances, 2015, 5, 42055-42062.	1.7	17
111	Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Metals, 2019, 38, 115-121.	3. 6	17
112	Arrayed nanopore silver thin films for surface-enhanced Raman scattering. RSC Advances, 2020, 10, 23908-23915.	1.7	17
113	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	2.5	15
114	3D Foam Anode and Hydrogel Electrolyte for Highâ€Performance and Stable Flexible Zinc–Air Battery. ChemistrySelect, 2020, 5, 8305-8310.	0.7	15
115	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie, 2021, 133, 7680-7684.	1.6	15
116	Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chemical Communications, 2022, 58, 8254-8257.	2.2	15
117	Mass production of high-performance single atomic FeNC electrocatalysts via sequenced ultrasonic atomization and pyrolysis process. Science China Materials, 2021, 64, 631-641.	3.5	14
118	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie, 2020, 132, 18621-18625.	1.6	13
119	Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Transactions of Tianjin University, 2021, 27, 248-268.	3.3	13
120	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 7312-7317.	1.6	12
121	Controlled Synthesis and Structure Engineering of Transition Metalâ€based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zincâ€Air Battery and Waterâ€Splitting Devices. ChemSusChem, 2021, 14, 1659-1673.	3.6	12
122	Ni-Doped Mo ₂ C Anchored on Graphitized Porous Carbon for Boosting Electrocatalytic N ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17273-17281.	4.0	12
123	Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts. Journal of Materials Science and Technology, 2021, 62, 119-127.	5. 6	11
124	Pt Monolayers on Electrodeposited Nanoparticles of Different Compositions for Ammonia Electro-Oxidation. Catalysts, 2019, 9, 4.	1.6	10
125	Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Science China Materials, 2022, 65, 3479-3489.	3.5	7
126	Regeneration of spent cathodes of Li-ion batteries into multifunctional electrodes for overall water splitting and rechargeable Zn-air batteries by ultrafast carbothermal shock. Science China Materials, 2022, 65, 2393-2400.	3.5	6

#	Article	IF	Citations
127	Hydrothermal synthesis, characterisation and growth mechanism of Ni(SO ₄) _{0.3} (OH) _{1.4} nanowires. Micro and Nano Letters, 2015, 10, 567-572.	0.6	5
128	Preparation and Thermal Conductivity of Epoxy Resin/Graphene-Fe3O4 Composites. Materials, 2021, 14, 2013.	1.3	5
129	Zinc–Air Batteries: Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries (Adv. Mater. 4/2018). Advanced Materials, 2018, 30, 1870027.	11.1	4
130	A Solutionâ€based Method for Synthesizing Pyriteâ€type Ferrous Metal Sulfide Microspheres with Efficient OER Activity. Chemistry - an Asian Journal, 2020, 15, 2231-2238.	1.7	4
131	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4
132	Development and Challenges of Biphasic Membraneâ€Less Redox Batteries. Advanced Science, 2022, 9, e2105468.	5.6	4
133	Preparation and Mechanical Properties of Layered Cu/Gr Composite Film. Coatings, 2021, 11, 502.	1.2	3
134	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025.	1.6	2
135	Correlating the crystal structure and facet of indium oxides with their activities for CO2 electroreduction. Fundamental Research, 2022, , .	1.6	1