Núria S Coll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6649040/publications.pdf

Version: 2024-02-01

NúRIA S COLL

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Programmed cell death in the plant immune system. Cell Death and Differentiation, 2011, 18, 1247-1256.	11.2	846
3	<i>Arabidopsis</i> Type I Metacaspases Control Cell Death. Science, 2010, 330, 1393-1397.	12.6	376
4	Plant innate immunity – sunny side up?. Trends in Plant Science, 2015, 20, 3-11.	8.8	193
5	Dying two deaths — programmed cell death regulation in development and disease. Current Opinion in Plant Biology, 2017, 35, 37-44.	7.1	161
6	A conserved core of PCD indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology, 2015, 169, pp.00769.2015.	4.8	141
7	The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death and Differentiation, 2014, 21, 1399-1408.	11.2	119
8	Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17036-17041.	7.1	107
9	Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. Journal of Experimental Botany, 2018, 69, 1335-1353.	4.8	97
10	Current knowledge on the <i><scp>R</scp>alstonia solanacearum</i> type <scp>III</scp> secretion system. Microbial Biotechnology, 2013, 6, 614-620.	4.2	95
11	Protease signaling in animal and plantâ€regulated cell death. FEBS Journal, 2016, 283, 2577-2598.	4.7	90
12	Autophagy as an emerging arena for plant–pathogen interactions. Current Opinion in Plant Biology, 2017, 38, 117-123.	7.1	88
13	A mutation in the Arabidopsis mTERFâ€related plastid protein SOLDAT10 activates retrograde signaling and suppresses ¹ O ₂ â€induced cell death. Plant Journal, 2009, 60, 399-410.	5.7	87
14	Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics, 2015, 16, 246.	2.8	85
15	Metacaspases versus caspases in development and cell fate regulation. Cell Death and Differentiation, 2017, 24, 1314-1325.	11.2	75
16	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
17	Cell Death in Plant Immunity. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036483.	5.5	67
18	Plant proteases in the control of the hypersensitive response. Journal of Experimental Botany, 2019, 70. 2087-2095.	4.8	62

NúRIA S COLL

#	Article	IF	CITATIONS
19	Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. Journal of Experimental Botany, 2021, 72, 184-198.	4.8	62
20	The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Scientific Reports, 2016, 6, 27058.	3.3	61
21	A Novel, Sensitive Method to Evaluate Potato Germplasm for Bacterial Wilt Resistance Using a Luminescent <i>Ralstonia solanacearum</i> Reporter Strain. Molecular Plant-Microbe Interactions, 2014, 27, 277-285.	2.6	57
22	At <scp>SERPIN</scp> 1 is an inhibitor of the metacaspase At <scp>MC</scp> 1â€mediated cell death and autocatalytic processing <i>in planta</i> . New Phytologist, 2018, 218, 1156-1166.	7.3	47
23	Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. Journal of Experimental Botany, 2020, 71, 2157-2171.	4.8	46
24	Characterization of soldat8, a Suppressor of Singlet Oxygen-Induced Cell Death in Arabidopsis Seedlings. Plant and Cell Physiology, 2009, 50, 707-718.	3.1	45
25	Twitching and Swimming Motility Play a Role in Ralstonia solanacearum Pathogenicity. MSphere, 2020, 5, .	2.9	40
26	Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics, 2021, 22, 170.	2.8	32
27	Type III secretion inhibitors for the management of bacterial plant diseases. Molecular Plant Pathology, 2019, 20, 20-32.	4.2	31
28	Transcriptomes of Ralstonia solanacearum during Root Colonization of Solanum commersonii. Frontiers in Plant Science, 2017, 8, 370.	3.6	30
29	Yeast as a Heterologous Model System to Uncover Type III Effector Function. PLoS Pathogens, 2016, 12, e1005360.	4.7	27
30	Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Standards in Genomic Sciences, 2016, 11, 7.	1.5	26
31	Induced lignoâ€suberin vascular coating and tyramineâ€derived hydroxycinnamic acid amides restrict <i>Ralstonia solanacearum</i> colonization in resistant tomato. New Phytologist, 2022, 234, 1411-1429.	7.3	26
32	Protease Activities Triggered by Ralstonia solanacearum Infection in Susceptible and Tolerant Tomato Lines. Molecular and Cellular Proteomics, 2018, 17, 1112-1125.	3.8	24
33	Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. Molecular Plant-Microbe Interactions, 2019, 32, 813-827.	2.6	24
34	Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches. ACS Biomaterials Science and Engineering, 2019, 5, 413-419.	5.2	20
35	Type III Secretion–Dependent and –Independent Phenotypes Caused by <i>Ralstonia solanacearum</i> in <i>Arabidopsis</i> Roots. Molecular Plant-Microbe Interactions, 2018, 31, 175-184.	2.6	19
36	Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses. Molecular Plant, 2022, 15, 1059-1075.	8.3	17

NúRIA S COLL

#	Article	IF	CITATIONS
37	A genome-wide association study reveals cytokinin as a major component in the root defense responses against <i>Ralstonia solanacearum</i> . Journal of Experimental Botany, 2021, 72, 2727-2740.	4.8	12
38	A quick and efficient hydroponic potato infection method for evaluating potato resistance and Ralstonia solanacearum virulence. Plant Methods, 2019, 15, 145.	4.3	9
39	Different epitopes of <i>Ralstonia solanacearum</i> effector RipAW are recognized by two <i>Nicotiana</i> species and trigger immune responses. Molecular Plant Pathology, 2022, 23, 188-203.	4.2	9
40	The Bacterial Wilt Reservoir Host Solanum dulcamara Shows Resistance to Ralstonia solanacearum Infection. Frontiers in Plant Science, 2021, 12, 755708.	3.6	7
41	Detection and Quantification of Protein Aggregates in Plants. Methods in Molecular Biology, 2016, 1450, 195-203.	0.9	4
42	Detection and Quantification of the Hypersensitive Response Cell Death in Arabidopsis thaliana. Methods in Molecular Biology, 2022, 2447, 193-204.	0.9	2
43	Molecular Detection of Ralstonia solanacearum to Facilitate Breeding for Resistance to Bacterial Wilt in Potato. Methods in Molecular Biology, 2021, 2354, 375-385.	0.9	1