
Michael S Gilmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664891/publications.pdf Version: 2024-02-01

MICHAELS GUMORE

#	Article	IF	CITATIONS
1	shsA: A novel orthologous of sasX/sesI virulence genes is detected in Staphylococcus haemolyticus Brazilian strains. Infection, Genetics and Evolution, 2022, 97, 105189.	2.3	3
2	Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell, 2022, 185, 1157-1171.e22.	28.9	22
3	Influence of the Alternative Sigma Factor RpoN on Global Gene Expression and Carbon Catabolism in Enterococcus faecalis V583. MBio, 2021, 12, .	4.1	3
4	Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Marine Drugs, 2021, 19, 328.	4.6	11
5	Chronic liver disease enables gut Enterococcus faecalis colonization to promote liver carcinogenesis. Nature Cancer, 2021, 2, 1039-1054.	13.2	26
6	A Cluster of Corneal Donor Rim Cultures Positive for Achromobacter Species Associated With Contaminated Eye Solution. Cornea, 2021, 40, 223-227.	1.7	0
7	Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes, 2020, 11, 217-230.	9.8	67
8	Clinical metagenomics for infectious corneal ulcers: Rags to riches?. Ocular Surface, 2020, 18, 1-12.	4.4	32
9	Validation of a Comprehensive Clinical Algorithm for the Assessment and Treatment of Microbial Keratitis. American Journal of Ophthalmology, 2020, 214, 97-109.	3.3	23
10	The Best of All Worlds: Streptococcus pneumoniae Conjunctivitis through the Lens of Community Ecology and Microbial Biogeography. Microorganisms, 2020, 8, 46.	3.6	5
11	A mutation in the glycosyltransferase gene lafB causes daptomycin hypersusceptibility in Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2020, 75, 36-45.	3.0	8
12	Coexistence of the Oxazolidinone Resistance–Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Frontiers in Public Health, 2020, 8, 518.	2.7	17
13	Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis. MBio, 2020, 11, .	4.1	19
14	Enterococci from Wild Magellanic Penguins (Spheniscus magellanicus) as an Indicator of Marine Ecosystem Health and Human Impact. Applied and Environmental Microbiology, 2020, 86, .	3.1	5
15	The Search for Antifungal Prophylaxis After Artificial Corneal Surgery—An In Vitro Study. Cornea, 2020, 39, 1547-1555.	1.7	4
16	Evolution of vancomycin-resistant <i>Enterococcus faecium</i> during colonization and infection in immunocompromised pediatric patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11703-11714.	7.1	36
17	Hospital-Associated Multidrug-Resistant MRSA Lineages Are Trophic to the Ocular Surface and Cause Severe Microbial Keratitis. Frontiers in Public Health, 2020, 8, 204.	2.7	12
18	Transferable Resistance Gene <i>optrA</i> in Enterococcus faecalis from Swine in Brazil. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19

#	Article	IF	CITATIONS
19	Genomic and Functional Characterization of Enterococcus faecalis Isolates Recovered From the International Space Station and Their Potential for Pathogenicity. Frontiers in Microbiology, 2020, 11, 515319.	3.5	10
20	Pathogenicity of Enterococci. Microbiology Spectrum, 2019, 7, .	3.0	230
21	Authors' response: Povidone-lodine for the Treatment of Microbial Keratitis. Survey of Ophthalmology, 2019, 64, 892-893.	4.0	0
22	The CRISPR–Antibiotic Resistance Connection. CRISPR Journal, 2019, 2, 199-200.	2.9	2
23	Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Applied and Environmental Microbiology, 2019, 85, .	3.1	34
24	Impact of antibiotic treatment and host innate immune pressure on enterococcal adaptation in the human bloodstream. Science Translational Medicine, 2019, 11, .	12.4	32
25	PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathogens, 2019, 15, e1007571.	4.7	24
26	The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Survey of Ophthalmology, 2019, 64, 255-271.	4.0	287
27	Daptomycin Resistance and Tolerance Due to Loss of Function in Staphylococcus aureus <i>dsp1</i> and <i>asp23</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37
28	Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. Infection, Genetics and Evolution, 2019, 67, 23-32.	2.3	13
29	Infectious corneal ulceration: a proposal for neglected tropical disease status. Bulletin of the World Health Organization, 2019, 97, 854-856.	3.3	52
30	Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1479-1486.	3.0	20
31	Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host and Microbe, 2018, 23, 169-176.e6.	11.0	127
32	Promysalin Elicits Species-Selective Inhibition of <i>Pseudomonas aeruginosa</i> by Targeting Succinate Dehydrogenase. Journal of the American Chemical Society, 2018, 140, 1774-1782.	13.7	63
33	Propyl-5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC): a new bacteriostatic agent against methicillin—resistant Staphylococcus aureus. Scientific Reports, 2018, 8, 7062.	3.3	6
34	A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 2018, 556, 103-107.	27.8	307
35	Resistance in <i>In Vitro</i> Selected Tigecycline-Resistant Methicillin-Resistant <i>Staphylococcus aureus</i> Sequence Type 5 Is Driven by Mutations in <i>mepR</i> and <i>mepA</i> Genes. Microbial Drug Resistance, 2018, 24, 519-526.	2.0	33
36	Methicillin-resistant Staphylococcus aureus in acute otitis externa. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2018, 4, 246-252.	1.6	4

#	Article	IF	CITATIONS
37	Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS ONE, 2018, 13, e0208518.	2.5	21
38	Resolution of fluoroquinolone-resistant Escherichia coli keratitis with a PROSE device for enhanced targeted antibiotic delivery. American Journal of Ophthalmology Case Reports, 2018, 12, 73-75.	0.7	7
39	Rapid Detection and Identification of Uveitis Pathogens by Qualitative Multiplex Real-Time PCR. , 2018, 59, 582.		20
40	Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Applied and Environmental Microbiology, 2018, 84, .	3.1	6
41	Staphylococcus aureusand its Bearing on Ophthalmic Disease. Ocular Immunology and Inflammation, 2017, 25, 111-121.	1.8	17
42	Raising the Alarmone: Within-Host Evolution of Antibiotic-Tolerant <i>Enterococcus faecium</i> . MBio, 2017, 8, .	4.1	24
43	Tracing the Enterococci from Paleozoic Origins to the Hospital. Cell, 2017, 169, 849-861.e13.	28.9	209
44	Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nature Microbiology, 2017, 2, 17079.	13.3	91
45	Mapping Transposon Insertions in Bacterial Genomes by Arbitrarily Primed PCR. Current Protocols in Molecular Biology, 2017, 118, 15.15.1-15.15.15.	2.9	19
46	Identification of a Functionally Unique Family of Penicillin-Binding Proteins. Journal of the American Chemical Society, 2017, 139, 17727-17730.	13.7	63
47	Genome-wide screen for genes involved in eDNA release during biofilm formation by <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5969-E5978.	7.1	97
48	Neither non-toxigenicStaphylococcus aureusnor commensalS.epidermidiactivates NLRP3 inflammasomes in human conjunctival goblet cells. BMJ Open Ophthalmology, 2017, 2, e000101.	1.6	8
49	Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2016, 60, 5777-5786.	3.2	31
50	Oxygen as a Virulence Determinant in Polymicrobial Infections. MBio, 2016, 7, .	4.1	2
51	Novel Phagocytosis-Resistant Extended-Spectrum β-Lactamase–Producing <i>Escherichia coli</i> From Keratitis. JAMA Ophthalmology, 2016, 134, 1306.	2.5	25
52	Multidrug Intrinsic Resistance Factors in Staphylococcus aureus Identified by Profiling Fitness within High-Diversity Transposon Libraries. MBio, 2016, 7, .	4.1	46
53	High-Quality Draft Genome Sequence of the Multidrug-Resistant Clinical Isolate Enterococcus faecium VRE16. Genome Announcements, 2016, 4, .	0.8	4
54	Killing of VRE <i>Enterococcus faecalis</i> by commensal strains: Evidence for evolution and accumulation of mobile elements in the absence of competition. Gut Microbes, 2016, 7, 90-96.	9.8	14

#	Article	IF	CITATIONS
55	Impact of Antibiotic Use on the Evolution of <i>Enterococcus faecium</i> . Journal of Infectious Diseases, 2016, 213, 1862-1865.	4.0	16
56	Antibiotic Resistance in Endophthalmitis Pathogens. , 2016, , 239-260.		2
57	A lysin to kill. ELife, 2016, 5, .	6.0	3
58	Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection. PLoS Pathogens, 2015, 11, e1005341.	4.7	118
59	A CRISPR View of Cleavage. Cell, 2015, 161, 964-966.	28.9	3
60	Novel model of innate immunity in corneal infection. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 827-834.	1.5	16
61	Biofilms in Infections of the Eye. Pathogens, 2015, 4, 111-136.	2.8	120
62	Pheromone killing of multidrug-resistant <i>Enterococcus faecalis</i> V583 by native commensal strains. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7273-7278.	7.1	45
63	A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics, 2015, 16, 252.	2.8	80
64	Mutations in Pneumococcal <i>cpsE</i> Generated via <i>In Vitro</i> Serial Passaging Reveal a Potential Mechanism of Reduced Encapsulation Utilized by a Conjunctival Isolate. Journal of Bacteriology, 2015, 197, 1781-1791.	2.2	41
65	A Genomic Virulence Reference Map of Enterococcus faecalis Reveals an Important Contribution of Phage03-Like Elements in Nosocomial Genetic Lineages to Pathogenicity in a Caenorhabditis elegans Infection Model. Infection and Immunity, 2015, 83, 2156-2167.	2.2	15
66	Complete Genome Sequence of Linezolid-Susceptible Staphylococcus haemolyticus Sh29/312/L2, a Clonal Derivative of a Linezolid-Resistant Clinical Strain. Genome Announcements, 2015, 3, .	0.8	4
67	The Enterococci. , 2015, , 717-730.		0
68	In Vitro and In Vivo Models of Staphylococcus aureus Endophthalmitis Implicate Specific Nutrients in Ocular Infection. PLoS ONE, 2014, 9, e110872.	2.5	8
69	An ABC Transporter Is Required for Secretion of Peptide Sex Pheromones in Enterococcus faecalis. MBio, 2014, 5, e01726-14.	4.1	31
70	Friend Turned Foe: Evolution of Enterococcal Virulence and Antibiotic Resistance. Annual Review of Microbiology, 2014, 68, 337-356.	7.3	162
71	Cost-Effectiveness of Follow-Up of Pulmonary Nodules Incidentally Detected on Cardiac Computed Tomographic Angiography in Patients With Suspected Coronary Artery Disease. Circulation, 2014, 130, 668-675.	1.6	40
72	Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster. Nature Communications, 2014, 5, 5411.	12.8	45

#	Article	IF	CITATIONS
73	Compound-gene interaction mapping reveals distinct roles for <i>Staphylococcus aureus</i> teichoic acids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12510-12515.	7.1	84
74	A Delicate Balance: Maintaining Mutualism to Prevent Disease. Cell Host and Microbe, 2014, 16, 425-427.	11.0	5
75	Genes Contributing to Staphylococcus aureus Fitness in Abscess- and Infection-Related Ecologies. MBio, 2014, 5, e01729-14.	4.1	130
76	Transcriptional response of Enterococcus faecalis to sunlight. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 349-356.	3.8	16
77	Virulence Plasmids of Nonsporulating Gram-Positive Pathogens. Microbiology Spectrum, 2014, 2, .	3.0	3
78	Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Current Opinion in Microbiology, 2013, 16, 10-16.	5.1	220
79	Dual defensin strategy for targeting <i>Enterococcus faecalis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19980-19981.	7.1	4
80	High-Quality Draft Genome Sequence of Vagococcus lutrae Strain LBD1, Isolated from the Largemouth Bass <i>Micropterus salmoides</i> . Genome Announcements, 2013, 1, .	0.8	8
81	Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains. MBio, 2013, 4, .	4.1	336
82	Structure, Function, and Biology of the Enterococcus faecalis Cytolysin. Toxins, 2013, 5, 895-911.	3.4	123
83	Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of <i>E</i> . <i>gallinarum</i> and <i>E</i> .Â <i>casseliflavus</i> . MBio, 2012, 3, e00318-11.	4.1	259
84	Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes. Journal of Antimicrobial Chemotherapy, 2012, 67, 2143-2151.	3.0	34
85	Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States. MBio, 2012, 3, .	4.1	125
86	CRISPR-Cas: To Take Up DNA or Not—That Is the Question. Cell Host and Microbe, 2012, 12, 125-126.	11.0	22
87	Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: Host–microbe interactions in intraocular infection. Progress in Retinal and Eye Research, 2012, 31, 316-331.	15.5	68
88	Biocompatibility and biofilm inhibition of N,N-hexyl,methyl-polyethylenimine bonded to Boston Keratoprosthesis materials. Biomaterials, 2011, 32, 8783-8796.	11.4	56
89	Role of Wall Teichoic Acids in <i>Staphylococcus aureus</i> Endophthalmitis. , 2011, 52, 3187.		22
90	High-Quality Draft Genome Sequences of 28 <i>Enterococcus</i> sp. Isolates. Journal of Bacteriology, 2010, 192, 2469-2470.	2.2	80

#	Article	IF	CITATIONS
91	Mechanism of chromosomal transfer of <i>Enterococcus faecalis</i> pathogenicity island, capsule, antimicrobial resistance, and other traits. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12269-12274.	7.1	165
92	Multidrug-Resistant Enterococci Lack CRISPR- <i>cas</i> . MBio, 2010, 1, .	4.1	362
93	Genetic Variation and Evolution of the Pathogenicity Island of <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 3392-3402.	2.2	64
94	The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology (United Kingdom), 2009, 155, 3226-3237.	1.8	50
95	Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Molecular Microbiology, 2008, 42, 729-740.	2.5	171
96	Contribution of secreted proteases to the pathogenesis of postoperative Enterococcus faecalis endophthalmitis. Journal of Cataract and Refractive Surgery, 2008, 34, 1776-1784.	1.5	26
97	αB-Crystallin Protects Retinal Tissue during <i>Staphylococcus aureus</i> - Induced Endophthalmitis. Infection and Immunity, 2008, 76, 1781-1790.	2.2	71
98	Staphylococcus aureus —Probing for Host Weakness?. Journal of Bacteriology, 2008, 190, 2253-2256.	2.2	27
99	Microbial Biofilms in Ophthalmology and Infectious Disease. JAMA Ophthalmology, 2008, 126, 1572.	2.4	95
100	Genetic Diversity among Enterococcus faecalis. PLoS ONE, 2007, 2, e582.	2.5	265
101	Quorum sensing and DNA release in bacterial biofilms. Current Opinion in Microbiology, 2006, 9, 133-137.	5.1	139
102	BacillusEndophthalmitis: Roles of Bacterial Toxins and Motility during Infection. , 2005, 46, 3233.		67
103	Fas Ligand but Not Complement Is Critical for Control of ExperimentalStaphylococcus aureusEndophthalmitis. , 2005, 46, 2479.		53
104	Biofilm Formation byEnterococcus faecalison Intraocular Lens Material. Current Eye Research, 2005, 30, 741-745.	1.5	26
105	Enterococcal virulence - pathogenicity island of E. Faecalis. Frontiers in Bioscience - Landmark, 2004, 9, 2335.	3.0	65
106	Contribution of Gelatinase, Serine Protease, and fsr to the Pathogenesis of Enterococcus faecalis Endophthalmitis. Infection and Immunity, 2004, 72, 3628-3633.	2.2	102
107	Enterococcus faecalis Senses Target Cells and in Response Expresses Cytolysin. Science, 2004, 306, 2270-2272.	12.6	95
108	Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. International Journal of Medical Microbiology, 2004, 293, 609-618.	3.6	52

#	Article	IF	CITATIONS
109	The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cellular Microbiology, 2003, 5, 661-669.	2.1	148
110	The Thin Line Between Gut Commensal and Pathogen. Science, 2003, 299, 1999-2002.	12.6	146
111	Molecular Analysis of the Enterococcus faecalis Serotype 2 Polysaccharide Determinant. Journal of Bacteriology, 2003, 185, 4393-4401.	2.2	32
112	Relationship of plcR -Regulated Factors to Bacillus Endophthalmitis Virulence. Infection and Immunity, 2003, 71, 3116-3124.	2.2	85
113	Molecular Mechanisms ofBacillusEndophthalmitis Pathogenesis. DNA and Cell Biology, 2002, 21, 367-373.	1.9	36
114	The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1574-1579.	7.1	139
115	Differential Expression of Virulence-Related Genes in Enterococcus faecalis in Response to Biological Cues in Serum and Urine. Infection and Immunity, 2002, 70, 4344-4352.	2.2	110
116	Bacterial Endophthalmitis: Epidemiology, Therapeutics, and Bacterium-Host Interactions. Clinical Microbiology Reviews, 2002, 15, 111-124.	13.6	310
117	Contribution of Membrane-Damaging Toxins to Bacillus Endophthalmitis Pathogenesis. Infection and Immunity, 2002, 70, 5381-5389.	2.2	59
118	Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature, 2002, 417, 746-750.	27.8	363
119	Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature, 2002, 415, 84-87.	27.8	192
120	Role of <i>Enterococcus faecalis</i> Surface Protein Esp in the Pathogenesis of Ascending Urinary Tract Infection. Infection and Immunity, 2001, 69, 4366-4372.	2.2	287
121	Clonal Associations among Staphylococcus aureus Isolates from Various Sites of Infection. Infection and Immunity, 2001, 69, 345-352.	2.2	104
122	Pathogenesis of Gram-Positive Bacterial Endophthalmitis. Infection and Immunity, 1999, 67, 3348-3356.	2.2	159
123	A vancomycin surprise. Nature, 1999, 399, 525-527.	27.8	31
124	Infection-Derived <i>Enterococcus faecalis</i> Strains Are Enriched in <i>esp</i> , a Gene Encoding a Novel Surface Protein. Infection and Immunity, 1999, 67, 193-200.	2.2	369
125	Role of Hemolysin BL in the Pathogenesis of Extraintestinal <i>Bacillus cereus</i> Infection Assessed in an Endophthalmitis Model. Infection and Immunity, 1999, 67, 3357-3366.	2.2	103
126	Simplified Agar Plate Method for Quantifying Viable Bacteria. BioTechniques, 1997, 23, 648-650.	1.8	445

#	Article	IF	CITATIONS
127	Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Molecular Microbiology, 1996, 21, 1175-1184.	2.5	184
128	Enterococcus faecalis Cytolysin without Effect on the Intestinal Growth of Susceptible Enterococci in Mice. Journal of Infectious Diseases, 1995, 172, 273-276.	4.0	20
129	Electroporation and Efficient Transformation of Enterococcus faecalis Grown in High Concentrations of Glycine. , 1995, 47, 217-226.		63
130	PCR amplification of streptococcal DNA using crude cell lysates. FEMS Microbiology Letters, 1992, 94, 139-142.	1.8	40
131	Translation of Messenger RNA from Canine Tracheal Epithelial Cells: Identification of Mucin Core Protein. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 149-154.	2.9	3
132	Location of antibiotic resistance determinants, copy control, and replication functions on the double-selective streptococcal cloning vector pGB301. Molecular Genetics and Genomics, 1981, 184, 115-120.	2.4	76
133	Plasmid pCB301, a new multiple resistance streptococcal cloning vehicle and its use in cloning of a gentamicin/kanamycin resistance determinant. Molecular Genetics and Genomics, 1981, 182, 414-421.	2.4	97
134	Pathogenicity of Enterococci. , 0, , 378-397.		10
135	Virulence Plasmids of Nonsporulating Gram-Positive Pathogens. , 0, , 559-576.		0