List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6648206/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature, 2014, 506, 364-366.	13.7	520
2	The conservation of bees: a global perspective. Apidologie, 2009, 40, 410-416.	0.9	418
3	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	3.8	330
4	Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos, 2000, 91, 421-427.	1.2	287
5	Strong context-dependent virulence in a host-parasite system: reconciling genetic evidence with theory. Journal of Animal Ecology, 2003, 72, 994-1002.	1.3	263
6	Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3693-3702.	1.2	239
7	A sting in the spit: widespread crossâ€infection of multiple <scp>RNA</scp> viruses across wild and managed bees. Journal of Animal Ecology, 2015, 84, 615-624.	1.3	229
8	Effects of Invasive Parasites on Bumble Bee Declines. Conservation Biology, 2011, 25, 662-671.	2.4	192
9	Rarity and decline in bumblebees – A test of causes and correlates in the Irish fauna. Biological Conservation, 2007, 136, 185-194.	1.9	169
10	Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160811.	1.2	162
11	Agrochemicals interact synergistically to increase bee mortality. Nature, 2021, 596, 389-392.	13.7	160
12	Sulfoxaflor exposure reduces bumblebee reproductive success. Nature, 2018, 561, 109-112.	13.7	152
13	Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1195-1202.	1.2	135
14	A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology, 2015, 16, 83.	3.8	130
15	Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 2017, 1, 1308-1316.	3.4	123
16	Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 2008, 9, 653-666.	0.8	117
17	Impact of managed honey bee viruses on wild bees. Current Opinion in Virology, 2016, 19, 16-22.	2.6	117
18	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115

#	Article	IF	CITATIONS
19	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	0.9	115
20	Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology, 2018, 55, 2812-2821.	1.9	114
21	Colour Patterns Do Not Diagnose Species: Quantitative Evaluation of a DNA Barcoded Cryptic Bumblebee Complex. PLoS ONE, 2012, 7, e29251.	1.1	108
22	Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology, 2010, 10, 174.	3.2	103
23	Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 2017, 18, 207.	1.2	100
24	The life-history impact and implications of multiple parasites for bumble bee queens. International Journal for Parasitology, 2008, 38, 799-808.	1.3	80
25	The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees. Parasitology, 2005, 130, 637-642.	0.7	79
26	THE EVOLUTION OF FEMALE MULTIPLE MATING IN SOCIAL HYMENOPTERA. Evolution; International Journal of Organic Evolution, 2003, 57, 2067-2081.	1.1	76
27	General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170123.	1.2	74
28	The role of disease in bee foraging ecology. Current Opinion in Insect Science, 2017, 21, 60-67.	2.2	73
29	Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180807.	1.2	73
30	Males of social insects can prevent queens from multiple mating. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1449-1454.	1.2	72
31	Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology, 2003, 126, 253-260.	0.7	70
32	Localâ€scale factors structure wild bee communities in protected areas. Journal of Applied Ecology, 2012, 49, 998-1008.	1.9	63
33	Nectar chemistry modulates the impact of an invasive plant on native pollinators. Functional Ecology, 2016, 30, 885-893.	1.7	62
34	Behavioural evidence for self-medication in bumblebees?. F1000Research, 2015, 4, 73.	0.8	62
35	Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Current Biology, 2019, 29, 3494-3500.e5.	1.8	61
36	DYNAMIC TRANSMISSION, HOST QUALITY, AND POPULATION STRUCTURE IN A MULTIHOST PARASITE OF BUMBLEBEES. Evolution; International Journal of Organic Evolution, 2012, 66, 3053-3066.	1.1	60

#	Article	IF	CITATIONS
37	Landscape effects on extremely fragmented populations of a rare solitary bee, <i>Colletes floralis</i> . Molecular Ecology, 2010, 19, 4922-4935.	2.0	59
38	Differential virulence in a multipleâ€host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos, 2009, 118, 941-949.	1.2	57
39	Roundup causes high levels of mortality following contact exposure in bumble bees. Journal of Applied Ecology, 2021, 58, 1167-1176.	1.9	55
40	Impact of chronic exposure to a pyrethroid pesticide on bumblebees and interactions with a trypanosome parasite. Journal of Applied Ecology, 2014, 51, 460-469.	1.9	54
41	Honey bee and bumblebee trypanosomatids: specificity and potential for transmission. Ecological Entomology, 2006, 31, 616-622.	1.1	51
42	Parasites and genetic diversity in an invasive bumblebee. Journal of Animal Ecology, 2014, 83, 1428-1440.	1.3	50
43	<scp>DNA</scp> barcoding a regional fauna: Irish solitary bees. Molecular Ecology Resources, 2012, 12, 990-998.	2.2	48
44	Building on IUCN Regional Red Lists to Produce Lists of Species of Conservation Priority: a Model with Irish Bees. Conservation Biology, 2007, 21, 1324-1332.	2.4	43
45	Cryptic Bumblebee Species: Consequences for Conservation and the Trade in Greenhouse Pollinators. PLoS ONE, 2012, 7, e32992.	1.1	43
46	No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ, 2019, 7, e7208.	0.9	43
47	Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees. F1000Research, 2015, 4, 73.	0.8	42
48	Sulfoxaflor exposure reduces egg laying in bumblebees <i>Bombus terrestris</i> . Journal of Applied Ecology, 2020, 57, 160-169.	1.9	40
49	Males vs workers: testing the assumptions of the haploid susceptibility hypothesis in bumblebees. Behavioral Ecology and Sociobiology, 2006, 60, 501-509.	0.6	39
50	Horizontal transmission success of <i>Nosema bombi</i> to its adult bumble bee hosts: effects of dosage, spore source and host age. Parasitology, 2007, 134, 1719-1726.	0.7	39
51	First detection of bee viruses in hoverfly (syrphid) pollinators. Biology Letters, 2018, 14, .	1.0	39
52	†Inert' ingredients are understudied, potentially dangerous to bees and deserve more research attention. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212353.	1.2	38
53	Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Sociaux, 2008, 55, 86-90.	0.7	36
54	Within colony dynamics ofNosema bombiinfections: disease establishment, epidemiology and potential vertical transmission. Apidologie, 2008, 39, 504-514.	0.9	36

#	Article	IF	CITATIONS
55	Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees. Scientific Reports, 2021, 11, 21653.	1.6	36
56	Emerging Viruses in Bees: From Molecules to Ecology. Advances in Virus Research, 2018, 101, 251-291.	0.9	35
57	Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics, 2019, 20, 959.	1.2	35
58	Dynamics of multiple-mating in the bumble bee Bombus hypnorum. Insectes Sociaux, 2002, 49, 315-319.	0.7	32
59	Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. Journal of Invertebrate Pathology, 2017, 148, 81-85.	1.5	32
60	Infection by the castrating parasitic nematode <i>Sphaerularia bombi</i> changes gene expression in <i>Bombus terrestris</i> bumblebee queens. Insect Molecular Biology, 2020, 29, 170-182.	1.0	32
61	Behavioural evidence for self-medication in bumblebees?. F1000Research, 0, 4, 73.	0.8	32
62	Tissue segregation of mitochondrial haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding. Molecular Ecology Resources, 2010, 10, 60-68.	2.2	30
63	Queenâ€controlled sex ratios and worker reproduction in the bumble bee Bombus hypnorum , as revealed by microsatellites. Molecular Ecology, 2003, 12, 1599-1605.	2.0	29
64	Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees. Science of the Total Environment, 2021, 795, 148680.	3.9	29
65	The trouble with bumblebees. Nature, 2011, 469, 169-170.	13.7	28
66	Investigating the impact of deploying commercial <i>Bombus terrestris for</i> crop pollination on pathogen dynamics in wild bumble bees. Journal of Apicultural Research, 2013, 52, 149-157.	0.7	28
67	Genetic Variability of the Neogregarine Apicystis bombi, an Etiological Agent of an Emergent Bumblebee Disease. PLoS ONE, 2013, 8, e81475.	1.1	28
68	Improving pesticide-use data for the EU. Nature Ecology and Evolution, 2021, 5, 1560-1560.	3.4	26
69	Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200935.	1.2	18
70	Revealing the hidden niches of cryptic bumblebees in Great Britain: Implications for conservation. Biological Conservation, 2015, 182, 126-133.	1.9	17
71	Brood-cell size has no influence on the population dynamics of <i>Varroa destructor</i> mites in the native western honey bee, <i>Apis mellifera mellifera</i> . Apidologie, 2010, 41, 522-530.	0.9	16
72	Bring out your dead: quantifying corpse removal in Bombus terrestris, an annual eusocial insect. Animal Behaviour, 2018, 138, 51-57.	0.8	15

#	Article	IF	CITATIONS
73	Host density drives viral, but not trypanosome, transmission in a key pollinator. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20191969.	1.2	14
74	Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato. Conservation Genetics, 2017, 18, 573-584.	0.8	13
75	Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210162.	1.8	13
76	Molecular sexing of pine marten (Martes martes): how many replicates?. Molecular Ecology Notes, 2006, 6, 631-633.	1.7	12
77	Prevalence of Nosema microsporidians in commercial bumblebees (Bombus terrestris) is not related to the intensity of their use at the landscape scale. Apidologie, 2019, 50, 234-242.	0.9	12
78	Mortality rates and division of labor in the leaf-cutting ant, Atta colombica. Journal of Insect Science, 2006, 6, 1-8.	0.6	11
79	Genetic diversity and parasite prevalence in two species of bumblebee. Journal of Insect Conservation, 2014, 18, 667-673.	0.8	11
80	Nectar preferences in male bumblebees. Insectes Sociaux, 2020, 67, 221-228.	0.7	11
81	Agri-environment scheme nectar chemistry can suppress the social epidemiology of parasites in an important pollinator. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210363.	1.2	11
82	Age-related pharmacodynamics in a bumblebee-microsporidian system mirror similar patterns in vertebrates. Journal of Experimental Biology, 2020, 223, .	0.8	10
83	Complex networks of parasites and pollinators: moving towards a healthy balance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210161.	1.8	10
84	Bringing Back a Healthy Buzz? Invertebrate Parasites and Reintroductions: A Case Study in Bumblebees. EcoHealth, 2017, 14, 74-83.	0.9	8
85	No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees. PeerJ, 2021, 9, e12486.	0.9	8
86	A Combined LD50 for Agrochemicals and Pathogens in Bumblebees (<i>Bombus terrestris</i>) Tj ETQq0 0 0 r	gBT /Qverloc	k 10 Tf 50 22
87	No effect of dual exposure to sulfoxaflor and a trypanosome parasite on bumblebee olfactory learning. Scientific Reports, 2022, 12, .	1.6	7
88	Life in cells, hosts, and vectors: Parasite evolution across scales. Infection, Genetics and Evolution, 2013, 13, 344-347.	1.0	6
89	Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite. Scientific Reports, 2018, 8, 5809.	1.6	6
90	Exposure to nectarâ€realistic sugar concentrations negatively impacts the ability of the trypanosome parasite (Crithidia bombi) to infect its bumblebee host. Ecological Entomology, 2020, 45, 1495-1498.	1.1	6

#	Article	IF	CITATIONS
91	Parasitism of urban bumble bees influenced by pollinator taxonomic richness, local garden management, and surrounding impervious cover. Urban Ecosystems, 2022, 25, 1169-1179.	1.1	6
92	Natural processes influencing pollinator health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210154.	1.8	6
93	The potential for parasite spill-back from commercial bumblebee colonies: a neglected threat to wild bees?. Journal of Insect Conservation, 2021, 25, 531-539.	0.8	3
94	Parasite resistance and immunity across female castes in a social insect. Behavioral Ecology and Sociobiology, 2022, 76, 1.	0.6	2
95	Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities. , 2020, , 187-201.		1
96	A new pollinator initiative on the island of Ireland. Bee World, 2004, 85, 83-84.	0.3	0
97	Detection rates of aphid DNA in the guts of larval hoverflies and potential links to the provision of floral resources. Bulletin of Entomological Research, 2022, , 1-7.	0.5	О