
Murat Rakap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664812/publications.pdf Version: 2024-02-01

Μιίρατ Ράκαρ

#	Article	IF	CITATIONS
1	Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catalysis Today, 2012, 183, 17-25.	4.4	144
2	Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2010, 35, 1305-1312.	7.1	131
3	Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst. International Journal of Hydrogen Energy, 2010, 35, 3341-3346.	7.1	122
4	Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 2009, 91, 21-29.	20.2	114
5	The highest catalytic activity in the hydrolysis of ammonia borane by poly(N-vinyl-2-pyrrolidone)-protected palladium–rhodium nanoparticles for hydrogen generation. Applied Catalysis B: Environmental, 2015, 163, 129-134.	20.2	94
6	Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 2011, 509, 7016-7021.	5.5	90
7	Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2011, 36, 7019-7027.	7.1	80
8	PVP-stabilized Ru–Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2015, 649, 1025-1030.	5.5	77
9	Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co–Ni–P) catalyst supported on Pd-activated TiO2 by electroless deposition. International Journal of Hydrogen Energy, 2011, 36, 254-261.	7.1	66
10	Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly(N-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles. Applied Catalysis A: General, 2014, 478, 15-20.	4.3	63
11	Polymer-immobilized palladium supported on TiO2 (Pd–PVB–TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia–borane solution. International Journal of Hydrogen Energy, 2011, 36, 1448-1455.	7.1	61
12	Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renewable Energy, 2020, 155, 1222-1230.	8.9	45
13	Poly(N-vinyl-2-pyrrolidone)-stabilized palladium–platinum nanoparticles-catalyzed hydrolysis of ammonia borane for hydrogen generation. Journal of Power Sources, 2015, 276, 320-327.	7.8	41
14	Hydrogen generation from the hydrolytic dehydrogenation of ammonia borane using electrolessly deposited cobalt–phosphorus as reusable and cost-effective catalyst. Journal of Power Sources, 2014, 265, 50-56.	7.8	27
15	Synthesis and characterization of bimetallic cobalt-rhodium nanoclusters as effective catalysts to produce hydrogen from ammonia borane hydrolysis. Renewable Energy, 2020, 154, 1076-1082.	8.9	27
16	Hydrogen generation from hydrolytic dehydrogenation of hydrazine borane by poly(N-vinyl-2-pyrrolidone)-stabilized palladium nanoparticles. Journal of Power Sources, 2015, 299, 403-407.	7.8	26
17	Hydrolysis of Sodium Borohydride and Ammonia Borane for Hydrogen Generation Using Highly Efficient Poly(<i>N</i> -Vinyl-2-Pyrrolidone)-Stabilized Ru–Pd Nanoparticles as Catalysts. International Journal of Green Energy, 2015, 12, 1288-1300.	3.8	25
18	Hydrolysis of ammonia borane and hydrazine borane by poly(\$N\$-vinyl-2-pyrrolidone)-stabilized CoPd nanoparticles for chemical hydrogen storage. Turkish Journal of Chemistry, 2017, 41, 221-232.	1.2	16

Murat Rakap

#	Article	IF	CITATIONS
19	Eco-Friendly Synthesis of Carboxymethyl Cellulose-Stabilized Ru0.57Co0.43 Nanoclusters as Extremely Efficient and Durable Catalysts for Hydrolytic Dehydrogenation of Methylamine Borane. ACS Sustainable Chemistry and Engineering, 2020, 8, 16197-16204.	6.7	16
20	Surfactant-aided synthesis of RhCo nanoclusters as highly effective and recyclable catalysts for the hydrolysis of methylamine borane and dimethylamine borane. Catalysis Science and Technology, 2020, 10, 7865-7874.	4.1	16
21	Rh–M (M: Co, Cu, and Fe) nanoclusters as highly efficient and durable catalysts for the methanolysis of ammonia borane. Catalysis Science and Technology, 2020, 10, 7270-7279.	4.1	15
22	Catalytic hydrolysis of hydrazine borane to release hydrogen by cobalt-ruthenium nanoclusters. International Journal of Hydrogen Energy, 2020, 45, 15611-15617.	7.1	12
23	Nickel-rhodium nanoparticles as active and durable catalysts for hydrogen liberation. Inorganic and Nano-Metal Chemistry, 2020, 50, 665-673.	1.6	4
24	Hydrolysis of Hydrazine Borane for Chemical Hydrogen Storage by Highly Efficient Poly(N-vinyl-2-pyrrolidone)-protected Rhodium Nanoparticles. NanoWorld Journal, 2017, 03, .	0.1	4
25	Hydrogen liberation from ethylenediamine bisborane hydrolysis by platinum nanoparticles. International Journal of Hydrogen Energy, 2022, 47, 18396-18403.	7.1	3
26	Hydrogen generation from ammonia borane by NiRu nanoparticles catalysts. Inorganic and Nano-Metal Chemistry, 2020, , 1-9.	1.6	1
27	Nanoceriaâ€Supported Ruâ€Based Nanoparticles as Highly Efficient Catalysts for Hydrolysis of Ethane 1,2â€Diamine Borane. ChemistrySelect, 2022, 7, .	1.5	1