
Debi P Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Attributes Associated With Refolding of Inclusion Body Proteins Using the Freeze–Thaw Method. Frontiers in Microbiology, 2021, 12, 618559.	3.5	12
2	Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Scientific Reports, 2021, 11, 13253.	3.3	8
3	Natural products and polymeric nanocarriers for cancer treatment: a review. Environmental Chemistry Letters, 2020, 18, 2021-2030.	16.2	22
4	The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV. Viruses, 2020, 12, 909.	3.3	56
5	Siteâ€specific phosphorylation of villin remodels the actin cytoskeleton to regulate Sendai viral glycoproteinâ€mediated membrane fusion. FEBS Letters, 2019, 593, 1927-1943.	2.8	4
6	A combinatorial approach for robust transgene delivery and targeted expression in mammary gland for generating biotherapeutics in milk, bypassing germline gene integration. Applied Microbiology and Biotechnology, 2018, 102, 6221-6234.	3.6	2
7	Induction of Transcriptional Gene Silencing by Expression of shRNA Directed to c-Myc P2 Promoter in Hepatocellular Carcinoma by Tissue-Specific Virosomal Delivery. Methods in Molecular Biology, 2017, 1543, 245-257.	0.9	2
8	Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes. Molecular Biology of the Cell, 2017, 28, 3801-3814.	2.1	6
9	Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells. Scientific Reports, 2015, 5, 10395.	3.3	14
10	A novel placental like alkaline phosphate promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting. Journal of Translational Medicine, 2015, 13, 254.	4.4	5
11	Membrane Fusion Mediated Targeted Cytosolic Drug Delivery Through scFv Engineered Sendai Viral Envelopes. Current Molecular Medicine, 2015, 15, 386-400.	1.3	13
12	Hepatocellular Carcinoma Specific Transcriptional Interference of câ€Myc promoter by alphaâ€fetoprotein and Sendai Virosome Based dsRNA System. FASEB Journal, 2015, 29, LB115.	0.5	0
13	Combination of hepatocyte specific delivery and transformation dependent expression of shRNA inducing transcriptional gene silencing of c-Myc promoter in hepatocellular carcinoma cells. BMC Cancer, 2014, 14, 582.	2.6	14
14	Inhibition of the Interaction Between NS3 Protease and HCV IRES With a Small Peptide: A Novel Therapeutic Strategy. Molecular Therapy, 2013, 21, 57-67.	8.2	7
15	Targeting Ribosome assembly on the HCV RNA using a small RNA molecule. RNA Biology, 2012, 9, 1110-1119.	3.1	10
16	Reciprocal Regulation of AKT and MAP Kinase Dictates Virus-Host Cell Fusion. Journal of Virology, 2010, 84, 4366-4382.	3.4	14
17	Targeted delivery of hepatitis C virus-specific short hairpin RNA in mouse liver using Sendai virosomes. Journal of General Virology, 2009, 90, 1812-1819.	2.9	21
18	A Histidine Switch in Hemagglutinin-Neuraminidase Triggers Paramyxovirus-Cell Membrane Fusion. Journal of Virology, 2009, 83, 1727-1741.	3.4	17

Debi P Sarkar

#	Article	IF	CITATIONS
19	Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of Sleeping Beauty transposon. Hepatology, 2009, 50, 815-824.	7.3	37
20	Association between human leukocyte antigen class II alleles and human papillomavirus-mediated cervical cancer in Indian women. Human Immunology, 2009, 70, 222-229.	2.4	37
21	Ex Vivo Gene Transfer into Hepatocytes. Methods in Molecular Biology, 2009, 481, 117-139.	0.9	18
22	Fibrillogenesis in ADan peptides is inhibited by biphenyl ethers. Biochemical and Biophysical Research Communications, 2008, 370, 681-686.	2.1	1
23	Form and dimensions of aggregates dictate cytotoxicities of Danish dementia peptides. Biochemical and Biophysical Research Communications, 2008, 372, 62-66.	2.1	6
24	Concurrence of Danish Dementia and Cataract: Insights from the Interactions of Dementia Associated Peptides with Eye Lens α-Crystallin. PLoS ONE, 2008, 3, e2927.	2.5	9
25	Histidylated Lipid-modified Sendai Viral Envelopes Mediate Enhanced Membrane Fusion and Potentiate Targeted Gene Delivery. Journal of Biological Chemistry, 2005, 280, 35399-35409.	3.4	21
26	Targeted Gene Delivery by Virosomes [*] ., 2002, 199, 163-174.		12
27	Targeted cytosolic delivery of hydrogel nanoparticles into HepC2 cells through engineered Sendai viral envelopes. FEBS Letters, 2002, 515, 184-188.	2.8	23
28	An internal segment (residues 58-119) of the hepatitis B virus X protein is sufficient to activate MAP kinase pathways in mouse liver. FEBS Letters, 2001, 504, 59-64.	2.8	23
29	Sustained Activation of Mitogen-Activated Protein Kinases and Activator Protein 1 by the Hepatitis B Virus X Protein in Mouse Hepatocytes In Vivo. Journal of Virology, 2001, 75, 10348-10358.	3.4	71
30	Site-specific gene delivery in vivo through engineered Sendai viral envelopes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11886-11890.	7.1	50
31	Novel gene delivery to liver cells using engineered virosomes. FEBS Letters, 1997, 404, 164-168.	2.8	35
32	F protein induced fusion of Sendai viral envelopes with mouse teratocarcinoma cells through LeX-LeXinteraction. FEBS Letters, 1996, 391, 17-20.	2.8	6
33	Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events Journal of Cell Biology, 1996, 135, 63-71.	5.2	208
34	Hemagglutinin-Catalyzed Cell-Cell Fusion: Kinetics of Initial Pore Formation from Video Rate, Multi-Wavelength Fluorescence Microscopy. Microscopy and Microanalysis, 1995, 1, 48-54.	0.4	0
35	Differences in Dispersion of Influenza Virus Lipids and Proteins during Fusion. Experimental Cell Research, 1995, 216, 411-421.	2.6	19
36	Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion Journal of Cell Biology, 1994, 127, 1885-1894.	5.2	146

Debi P Sarkar

#	Article	IF	CITATIONS
37	Effect of substitution of hemagglutinin-neuraminidase with influenza hemagglutinin on Sendai virus F protein mediated membrane fusion. FEBS Letters, 1994, 353, 332-336.	2.8	8
38	Targeted delivery of hygromycin B using reconstituted Sendai viral envelopes lacking hemagglutinin-neuraminidase. FEBS Letters, 1993, 326, 183-188.	2.8	18
39	Reconstituted Sendai virus envelopes as biological carriers: dual role of F protein in binding and fusion with liver cells. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1152, 15-25.	2.6	26
40	[4] Kinetics of cell fusion mediated by viral spike glycoproteins. Methods in Enzymology, 1993, 221, 42-58.	1.0	12
41	Single cell fusion events induced by influenza hemagglutinin: Studies with rapid-flow, quantitative fluorescence microscopy. Experimental Cell Research, 1991, 195, 137-144.	2.6	34
42	Initial stages of influenza hemagglutinin-induced cell fusion monitored simultaneously by two fluorescent events: cytoplasmic continuity and lipid mixing Journal of Cell Biology, 1989, 109, 113-122.	5.2	132
43	The Role of the Target Membrane Structure in Fusion with Sendai Virus. Membrane Biochemistry, 1987, 7, 231-247.	0.6	28
44	Binding of anti-galactosyl antibodies to galactosylated liposomes. Immunology Letters, 1984, 8, 257-260.	2.5	1
45	Characterization of anti-N-acetyl-d-glucosamine antibodies elicited through haptenated liposomes. Carbohydrate Research, 1984, 128, 335-340.	2.3	1
46	Interaction of Fabμ of anti-galactocerebroside antibody with galactocerebroside liposomes. Immunology Letters, 1983, 6, 223-226.	2.5	1
47	The Adjuvant Effect of Liposomes in Eliciting Anti-Galactosyl Antibodies. Immunological Investigations, 1982, 11, 175-188.	0.8	12