Sarah F Leibowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibroblast growth factor 2: Role in prenatal alcohol-induced stimulation of hypothalamic peptide neurons. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 116, 110536.	2.5	3
2	Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Scientific Reports, 2021, 11, 16078.	1.6	10
3	Predicting and Classifying Rats Prone to Overeating Fat. Neuromethods, 2021, , 79-93.	0.2	Ο
4	Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96, 109728.	2.5	24
5	CCL2/CCR2 Chemokine System in Embryonic Hypothalamus: Involvement in Sexually Dimorphic Stimulatory Effects of Prenatal Ethanol Exposure on Peptide-Expressing Neurons. Neuroscience, 2020, 424, 155-171.	1.1	16
6	CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. Journal of Neuroinflammation, 2020, 17, 207.	3.1	7
7	Involvement of Cxcl12a/Cxcr4b Chemokine System in Mediating the Stimulatory Effect of Embryonic Ethanol Exposure on Neuronal Density in Zebrafish Hypothalamus. Alcoholism: Clinical and Experimental Research, 2020, 44, 2519-2535.	1.4	7
8	Moderate Prenatal Ethanol Exposure Stimulates CXCL12/CXCR4 Chemokine System in Radial Glia Progenitor Cells in Hypothalamic Neuroepithelium and Peptide Neurons in Lateral Hypothalamus of the Embryo and Postnatal Offspring. Alcoholism: Clinical and Experimental Research, 2020, 44, 866-879.	1.4	15
9	Third Ventricular Injection of CCL2 in Rat Embryo Stimulates CCL2/CCR2 Neuroimmune System in Neuroepithelial Radial Glia Progenitor Cells: Relation to Sexually Dimorphic, Stimulatory Effects on Peptide Neurons in Lateral Hypothalamus. Neuroscience, 2020, 443, 188-205.	1.1	5
10	Role of melanin-concentrating hormone in drug use disorders. Brain Research, 2020, 1741, 146872.	1.1	13
11	Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcoholism: Clinical and Experimental Research, 2019, 43, 1702-1713.	1.4	21
12	Neurotensin in the posterior thalamic paraventricular nucleus: inhibitor of pharmacologically relevant ethanol drinking. Addiction Biology, 2019, 24, 3-16.	1.4	29
13	Hypothalamic CCL2/CCR2 Chemokine System: Role in Sexually Dimorphic Effects of Maternal Ethanol Exposure on Melanin-Concentrating Hormone and Behavior in Adolescent Offspring. Journal of Neuroscience, 2018, 38, 9072-9090.	1.7	20
14	Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addiction Biology, 2017, 22, 58-69.	1.4	37
15	Involvement of the CXCL12 System in the Stimulatory Effects of Prenatal Exposure to High-Fat Diet on Hypothalamic Orexigenic Peptides and Behavior in Offspring. Frontiers in Behavioral Neuroscience, 2017, 11, 91.	1.0	12
16	Orexin/Hypocretin System: Role in Food and Drug Overconsumption. International Review of Neurobiology, 2017, 136, 199-237.	0.9	43
17	Relationship of the Chemokine, CXCL12, to Effects of Dietary Fat on Feeding-Related Behaviors and Hypothalamic Neuropeptide Systems. Frontiers in Behavioral Neuroscience, 2016, 10, 51.	1.0	25
18	Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Frontiers in Nutrition, 2016, 3, 11.	1.6	8

#	Article	IF	CITATIONS
19	Hypothalamic neuropeptide signaling in alcohol addiction. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 65, 321-329.	2.5	44
20	Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behavioural Brain Research, 2016, 304, 125-138.	1.2	31
21	Regulation of the orexigenic neuropeptide, enkephalin, by <scp>PPAR</scp> δ and fatty acids in neurons of the hypothalamus and forebrain. Journal of Neurochemistry, 2015, 135, 918-931.	2.1	11
22	Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet. Alcohol, 2015, 49, 479-489.	0.8	9
23	Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: role of orexin receptor 2. Addiction Biology, 2015, 20, 469-481.	1.4	107
24	Differential Role of <scp>D</scp> 1 and <scp>D</scp> 2 Receptors in the Perifornical Lateral Hypothalamus in Controlling Ethanol Drinking and Food Intake: Possible Interaction with Local Orexin Neurons. Alcoholism: Clinical and Experimental Research, 2014, 38, 777-786.	1.4	22
25	Stimulatory role of the chemokine CCL2 in the migration and peptide expression of embryonic hypothalamic neurons. Journal of Neurochemistry, 2014, 131, 509-520.	2.1	19
26	Common effects of fat, ethanol, and nicotine on enkephalin in discrete areas of the brain. Neuroscience, 2014, 277, 665-678.	1.1	16
27	Hypothalamic peptides controlling alcohol intake: Differential effects on microstructure of drinking bouts. Alcohol, 2014, 48, 657-664.	0.8	12
28	Stimulation of nicotine reward and central cholinergic activity in Sprague–Dawley rats exposed perinatally to a fat-rich diet. Psychopharmacology, 2013, 230, 509-524.	1.5	23
29	Prenatal Exposure to Nicotine Stimulates Neurogenesis of Orexigenic Peptide-Expressing Neurons in Hypothalamus and Amygdala. Journal of Neuroscience, 2013, 33, 13600-13611.	1.7	41
30	Opioids in the perifornical lateral hypothalamus suppress ethanol drinking. Alcohol, 2013, 47, 31-38.	0.8	14
31	Glutamatergic Input to the Lateral Hypothalamus Stimulates Ethanol Intake: Role of Orexin and Melanin oncentrating Hormone. Alcoholism: Clinical and Experimental Research, 2013, 37, 123-131.	1.4	18
32	Neurochemical Heterogeneity of Rats Predicted by Different Measures to be High Ethanol Consumers. Alcoholism: Clinical and Experimental Research, 2013, 37, E141-51.	1.4	31
33	Complementary Roles of Orexin and Melanin-Concentrating Hormone in Feeding Behavior. International Journal of Endocrinology, 2013, 2013, 1-10.	0.6	67
34	Prenatal Exposure to Dietary Fat Induces Changes in the Transcriptional Factors,TEF and YAP, Which May Stimulate Differentiation of Peptide Neurons in Rat Hypothalamus. PLoS ONE, 2013, 8, e77668.	1.1	14
35	Predicting and Classifying Rats Prone to Overeating Fat. Neuromethods, 2013, , 83-96.	0.2	0
36	Developmental changes in embryonic hypothalamic neurons during prenatal fat exposure. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E432-E441.	1.8	26

#	Article	IF	CITATIONS
37	Neurobiology of Consummatory Behavior: Mechanisms Underlying Overeating and Drug Use. ILAR Journal, 2012, 53, 35-58.	1.8	30
38	Involvement of cholinergic mechanisms in the behavioral effects of dietary fat consumption. Brain Research, 2012, 1470, 24-34.	1.1	35
39	Disturbances in behavior and cortical enkephalin gene expression during the anticipation of ethanol in rats characterized as high drinkers. Alcohol, 2012, 46, 559-568.	0.8	15
40	Prenatal ethanol exposure stimulates neurogenesis in hypothalamic and limbic peptide systems: Possible mechanism for offspring ethanol overconsumption. Neuroscience, 2012, 222, 417-428.	1.1	47
41	Effects of perinatal exposure to palatable diets on body weight and sensitivity to drugs of abuse in rats. Physiology and Behavior, 2012, 107, 568-575.	1.0	61
42	A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens. Brain Sciences, 2012, 2, 242-253.	1.1	36
43	Obituary for Bart Hoebel. Psychopharmacology, 2012, 220, 645-646.	1.5	0
44	Effect of dietary fatty acid composition on food intake, triglycerides, and hypothalamic peptides. Regulatory Peptides, 2012, 173, 13-20.	1.9	33
45	Introduction to special issue of Physiology and Behavior: A tribute to Bart Hoebel. Physiology and Behavior, 2011, 104, 1-3.	1.0	2
46	Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiology and Behavior, 2011, 104, 128-137.	1.0	55
47	Regulation of Drug and Palatable Food Overconsumption by Similar Peptide Systems. Current Drug Abuse Reviews, 2011, 4, 163-173.	3.4	36
48	Increased orexin and melanin-concentrating hormone expression in the perifornical lateral hypothalamus of rats prone to overconsuming a fat-rich diet. Pharmacology Biochemistry and Behavior, 2010, 96, 413-422.	1.3	30
49	Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Research, 2010, 1312, 1-9.	1.1	49
50	Predictors of ethanol consumption in adult Sprague–Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake. Alcohol, 2010, 44, 323-334.	0.8	25
51	Galanin Knockout Mice Show Disturbances in Ethanol Consumption and Expression of Hypothalamic Peptides That Stimulate Ethanol Intake. Alcoholism: Clinical and Experimental Research, 2010, 34, 72-80.	1.4	42
52	Opioids in the Hypothalamic Paraventricular Nucleus Stimulate Ethanol Intake. Alcoholism: Clinical and Experimental Research, 2010, 34, 214-222.	1.4	66
53	Effect of Chronic Ethanol on Enkephalin in the Hypothalamus and Extraâ€Hypothalamic Areas. Alcoholism: Clinical and Experimental Research, 2010, 34, 761-770.	1.4	40
54	Differential Effects of Acute and Chronic Ethanol Exposure on Orexin Expression in the Perifornical Lateral Hypothalamus. Alcoholism: Clinical and Experimental Research, 2010, 34, 886-896.	1.4	68

#	Article	IF	CITATIONS
55	Increased enkephalin in brain of rats prone to overconsuming a fat-rich diet. Physiology and Behavior, 2010, 101, 360-369.	1.0	42
56	Reduced accumbens dopamine in Sprague–Dawley rats prone to overeating a fat-rich diet. Physiology and Behavior, 2010, 101, 394-400.	1.0	117
57	Galanin and Consummatory Behavior: Special Relationship with Dietary Fat, Alcohol and Circulating Lipids. Exs, 2010, 102, 87-111.	1.4	27
58	Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs. Alcohol, 2009, 43, 433-441.	0.8	87
59	Increased intake of ethanol and dietary fat in galanin overexpressing mice. Alcohol, 2009, 43, 571-580.	0.8	59
60	Hypothalamic injection of non-opioid peptides increases gene expression of the opioid enkephalin in hypothalamic and mesolimbic nuclei: Possible mechanism underlying their behavioral effects. Peptides, 2009, 30, 2423-2431.	1.2	17
61	Opioids in the nucleus accumbens stimulate ethanol intake. Physiology and Behavior, 2009, 98, 453-459.	1.0	41
62	Maternal High-Fat Diet and Fetal Programming: Increased Proliferation of Hypothalamic Peptide-Producing Neurons That Increase Risk for Overeating and Obesity. Journal of Neuroscience, 2008, 28, 12107-12119.	1.7	349
63	Overconsumption of dietary fat and alcohol: Mechanisms involving lipids and hypothalamic peptides. Physiology and Behavior, 2007, 91, 513-521.	1.0	60
64	Effect of Ethanol on Hypothalamic Opioid Peptides, Enkephalin, and Dynorphin: Relationship With Circulating Triglycerides. Alcoholism: Clinical and Experimental Research, 2007, 31, 249-259.	1.4	73
65	Orexigenic Peptides and Alcohol Intake: Differential Effects of Orexin, Galanin, and Ghrelin. Alcoholism: Clinical and Experimental Research, 2007, 31, 1858-1865.	1.4	132
66	Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nature Medicine, 2006, 12, 526-533.	15.2	81
67	Hypothalamic Galanin and Ingestive Behavior: Relation to Dietary Fat, Alcohol, and Circulating Lipids. , 2006, , 895-901.		1
68	Function of neuropeptide Y and agouti-related protein at weaning: relation to corticosterone, dietary carbohydrate and body weight. Brain Research, 2005, 1036, 180-191.	1.1	15
69	Phenotypic profile of SWR/J and A/J mice compared to control strains: Possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Research, 2005, 1047, 137-147.	1.1	44
70	Regulation and effects of hypothalamic galanin: relation to dietary fat, alcohol ingestion, circulating lipids and energy homeostasis. Neuropeptides, 2005, 39, 327-332.	0.9	97
71	Glucose injection reduces neuropeptide Y and agouti-related protein expression in the arcuate nucleus: A possible physiological role in eating behavior. Molecular Brain Research, 2005, 135, 69-80.	2.5	31
72	Galanin Microinjection in the Third Ventricle Increases Voluntary Ethanol Intake. Alcoholism: Clinical and Experimental Research, 2004, 28, 1822-1828.	1.4	62

#	Article	IF	CITATIONS
73	Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle. Brain Research, 2004, 1008, 168-178.	1.1	78
74	A high-fat meal or injection of lipids stimulates ethanol intake. Alcohol, 2004, 34, 197-202.	0.8	43
75	Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol, 2004, 34, 203-209.	0.8	123
76	Circulating Triglycerides Impact on Orexigenic Peptides and Neuronal Activity in Hypothalamus. Endocrinology, 2004, 145, 3904-3912.	1.4	119
77	Hypothalamic control of energy balance: different peptides, different functions. Peptides, 2004, 25, 473-504.	1.2	215
78	Cocaine- and amphetamine-regulated transcript in the arcuate nucleus stimulates lipid metabolism to control body fat accrual on a high-fat diet. Regulatory Peptides, 2004, 117, 89-99.	1.9	48
79	Ethanol intake is increased by injection of galanin in the paraventricular nucleus and reduced by a galanin antagonist. Alcohol, 2004, 33, 91-97.	0.8	56
80	Ethanol intake increases galanin mRNA in the hypothalamus and withdrawal decreases it. Physiology and Behavior, 2003, 79, 103-111.	1.0	63
81	Orexin gene expression is increased during states of hypertriglyceridemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1454-R1465.	0.9	101
82	Macronutrients and Brain Peptides. , 1999, , .		8
83	Differential Functions of Galanin Cell Groups in the Regulation of Eating and Body Weight a. Annals of the New York Academy of Sciences, 1998, 863, 206-220.	1.8	43
84	Neuropeptide Y in relation to carbohydrate intake, corticosterone and dietary obesity. Brain Research, 1998, 802, 75-88.	1.1	65
85	Hypothalamic galanin: control by signals of fat metabolism. Brain Research, 1998, 804, 7-20.	1.1	71
86	Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biological Psychiatry, 1998, 44, 851-864.	0.7	450
87	Behavioral and endocrine traits of obesity-prone and obesity-resistant rats on macronutrient diets. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E1057-E1066.	1.8	24
88	Obesity on a High-Fat Diet: Role of Hypothalamic Galanin in Neurons of the Anterior Paraventricular Nucleus Projecting to the Median Eminence. Journal of Neuroscience, 1998, 18, 2709-2719.	1.7	134
89	Hypothalamic Galanin Gene Expression and Peptide Levels in Relation to Circulating Insulin: Possible Role in Energy Balance. Neuroendocrinology, 1997, 65, 265-275.	1.2	29
90	Brain Peptides and Obesity: Pharmacologic Treatment. Obesity, 1995, 3, 573S-589S.	4.0	99

#	Article	IF	CITATIONS
91	Hypothalamic neuropeptide Y, its gene expression and receptor activity: relation to circulating corticosterone in adrenalectomized rats. Brain Research, 1994, 665, 201-212.	1.1	84
92	Adrenal Steroid Receptors: Interactions with Brain Neuropeptide Systems in Relation to Nutrient Intake and Metabolism. Journal of Neuroendocrinology, 1994, 6, 479-501.	1.2	191
93	Hypothalamic galanin-like immunoreactivity and its gene expression in relation to circulating corticosterone. Molecular Brain Research, 1994, 25, 305-312.	2.5	26
94	Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Molecular Brain Research, 1994, 21, 55-61.	2.5	176
95	Hypothalamic Neuropeptide Y and Its Gene Expression: Relation to Light/Dark Cycle and Circulating Corticosterone. Molecular and Cellular Neurosciences, 1994, 5, 210-218.	1.0	89
96	Neuropeptide Y in the arcuate nucleus is modulated by alterations in glucose utilization. Brain Research, 1993, 621, 343-348.	1.1	85
97	Neuropeptide Y projection from arcuate nucleus to parvocellular division of paraventricular nucleus: specific relation to the ingestion of carbohydrate. Brain Research, 1993, 631, 97-106.	1.1	113
98	Blockade of natural and neuropeptide Y-induced carbohydrate feeding by a receptor antagonist PYX-2. NeuroReport, 1992, 3, 1023-1026.	0.6	47
99	Metabolic effects of galanin injections into the paraventricular nucleus of the hypothalamus. Peptides, 1992, 13, 323-327.	1.2	46
100	Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Research, 1992, 599, 148-152.	1.1	126
101	Developmental patterns of macronutrient intake in female and male rats from weaning to maturity. Physiology and Behavior, 1991, 50, 1167-1174.	1.0	86
102	Self-selecting albino rats exhibit differential preferences for pure macronutrient diets: Characterization of three subpopulations. Physiology and Behavior, 1991, 50, 1187-1195.	1.0	90
103	Diurnal variations in the feeding responses to norepinephrine, neuropeptide Y and galanin in the PVN. Brain Research Bulletin, 1990, 25, 821-825.	1.4	119
104	Metabolic effects of neuropeptide Y injections into the paraventricular nucleus of the hypothalamus. Brain Research, 1990, 516, 8-14.	1.1	90
105	Suppression of neuropeptide Y-elicited eating by adrenalectomy or hypophysectomy: reversal with corticosterone. Brain Research, 1989, 501, 32-36.	1.1	100
106	Repeated hypothalamic stimulation with neuropeptide Y increases daily carbohydrate and fat intake and body weight gain in female rats. Physiology and Behavior, 1989, 46, 173-177.	1.0	138
107	Multiple brain sites sensitive to feeding stimulation by opioid agonists: A cannula-mapping study. Pharmacology Biochemistry and Behavior, 1988, 31, 825-832.	1.3	122
108	Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: Stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Research Bulletin, 1988, 21, 905-912.	1.4	206

#	Article	IF	CITATIONS
109	Effects of PVN galanin on macronutrient selection. Peptides, 1988, 9, 309-314.	1.2	246
110	Galanin: Stimulation of feeding induced by medial hypothalamic injection of this novel peptide. European Journal of Pharmacology, 1986, 122, 159-160.	1.7	259
111	Neuropeptide Y chronically injected into the hypothalamus: A powerful neurochemical inducer of hyperphagia and obesity. Peptides, 1986, 7, 1189-1192.	1.2	825
112	Neuroreptide Y: Stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sciences, 1984, 35, 2635-2642.	2.0	622
113	Endorphinergic and α-noradrenergic systems in the paraventricular nucleus: Effects on eating behavior. Peptides, 1982, 3, 421-428.	1.2	172