Weiqi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647302/publications.pdf

Version: 2024-02-01

		81743	85405
77	5,810	39	71
papers	citations	h-index	g-index
70	70	70	6022
79	79	79	6833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 2015, 348, 1160-1163.	6.0	429
2	Repression of the Antioxidant NRF2 Pathway in Premature Aging. Cell, 2016, 165, 1361-1374.	13.5	378
3	Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 2012, 491, 603-607.	13.7	312
4	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	13.5	306
5	Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 2011, 21, 196-204.	5.7	293
6	The ageing epigenome and itsÂrejuvenation. Nature Reviews Molecular Cell Biology, 2020, 21, 137-150.	16.1	276
7	SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research, 2016, 26, 190-205.	5.7	261
8	Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 2020, 180, 984-1001.e22.	13.5	206
9	Epigenetic Modifications in Cardiovascular Aging and Diseases. Circulation Research, 2018, 123, 773-786.	2.0	180
10	A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 2020, 11, 740-770.	4.8	179
11	A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell, 2021, 56, 383-397.e8.	3.1	145
12	Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Research, 2021, 49, D825-D830.	6.5	140
13	SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature, 2018, 560, 661-665.	13.7	128
14	PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 2015, 6, 10068.	5.8	122
15	Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.	2.6	104
16	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	5.8	102
17	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	6.5	99
18	A single-cell transcriptomic landscape of primate arterial aging. Nature Communications, 2020, 11, 2202.	5.8	95

#	Article	IF	CITATIONS
19	A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nature Cell Biology, 2021, 23, 1314-1328.	4.6	91
20	Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein and Cell, 2019, 10, 417-435.	4.8	88
21	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	5.7	88
22	SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein and Cell, 2020, 11 , 483-504.	4.8	85
23	Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nature Communications, 2019, 10, 3329.	5.8	82
24	Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Reports, 2019, 26, 3643-3656.e7.	2.9	81
25	A genome-wide CRISPR-based screen identifies <i>KAT7</i> as a driver of cellular senescence. Science Translational Medicine, 2021, 13, .	5.8	79
26	FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell, 2019, 24, 447-461.e8.	5.2	78
27	SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Research, 2021, 49, 4203-4219.	6.5	74
28	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	5.7	67
29	Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein and Cell, 2016, 7, 478-488.	4.8	58
30	Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 2018, 9, 333-350.	4.8	56
31	Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein and Cell, 2020, 11, 1-22.	4.8	54
32	ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Research, 2020, 48, 6001-6018.	6.5	54
33	Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell, 2022, 29, 990-1005.e10.	5.2	53
34	Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Research, 2017, 27, 483-504.	5.7	51
35	Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Reports, 2020, 32, 107870.	2.9	51
36	Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery, 2022, 8, 6.	3.1	50

#	Article	IF	CITATIONS
37	ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discovery, 2018, 4, 2.	3.1	49
38	Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein and Cell, 2021, 12, 695-716.	4.8	49
39	Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing. Protein and Cell, 2020, 11, 809-824.	4.8	46
40	Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein and Cell, 2021, 12, 57-66.	4.8	42
41	Low-dose quercetin positively regulates mouse healthspan. Protein and Cell, 2019, 10, 770-775.	4.8	41
42	Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein and Cell, 2019, 10, 249-271.	4.8	41
43	Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Research, 2017, 27, 1178-1181.	5.7	40
44	A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review, 2021, 8, nwaa127.	4.6	37
45	Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein and Cell, 2022, 13, 220-226.	4.8	36
46	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2, 303-316.	5.3	36
47	Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein and Cell, 2019, 10, 649-667.	4.8	35
48	Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental Cell, 2022, 57, 1347-1368.e12.	3.1	32
49	Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein and Cell, 2016, 7, 210-221.	4.8	29
50	FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein and Cell, 2021, 12, 145-151.	4.8	27
51	Deciphering primate retinal aging at single-cell resolution. Protein and Cell, 2021, 12, 889-898.	4.8	26
52	CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells. Protein and Cell, 2018, 9, 945-965.	4.8	20
53	Protein quality control of cell stemness. Cell Regeneration, 2020, 9, 22.	1.1	20
54	Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein and Cell, 2022, 13, 532-539.	4.8	18

#	Article	IF	CITATIONS
55	Concealing cellular defects in pluripotent stem cells. Trends in Cell Biology, 2013, 23, 587-592.	3.6	15
56	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	6.5	14
57	Evolution of iPSC disease models. Protein and Cell, 2012, 3, 1-4.	4.8	13
58	DJ-1 is dispensable for human stem cell homeostasis. Protein and Cell, 2019, 10, 846-853.	4.8	13
59	FTO stabilizes MIS12 and counteracts senescence. Protein and Cell, 2022, 13, 954-960.	4.8	13
60	Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death and Disease, 2018, 9, 923.	2.7	12
61	ER reductive stress caused by ${\rm Ero1\hat{l}\pm S-nitrosation}$ accelerates senescence. Free Radical Biology and Medicine, 2022, 180, 165-178.	1.3	12
62	Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein and Cell, 2022, 13, 422-445.	4.8	11
63	A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein and Cell, 2015, 6, 386-389.	4.8	10
64	OUP accepted manuscript. Nucleic Acids Research, 2021, , .	6.5	9
65	Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein and Cell, 2022, 13, 615-622.	4.8	9
66	Low-dose chloroquine treatment extends the lifespan of aged rats. Protein and Cell, 2022, 13, 454-461.	4.8	9
67	ALKBH1 deficiency leads to loss of homeostasis in human diploid somatic cells. Protein and Cell, 2020, 11, 688-695.	4.8	8
68	mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells. Protein and Cell, 2022, 13, 676-682.	4.8	6
69	Deciphering aging at three-dimensional genomic resolution. , 2022, 1, 100034.		6
70	Converted neural cells: induced to a cure?. Protein and Cell, 2012, 3, 91-97.	4.8	5
71	Emerging role of RNA m6A modification in aging regulation. , 2022, 1, .		5
72	A \hat{l}^2 -galactosidase kiss of death for senescent cells. Cell Research, 2020, 30, 556-557.	5.7	4

WEIQI ZHANG

#	Article	IF	CITATIONS
73	Non-viral iPSCs: a safe way for therapy?. Protein and Cell, 2012, 3, 241-245.	4.8	3
74	Protein quality control of cell stemness. Cell Regeneration, 2020, 9, 22.	1.1	2
75	Ectopic resurrection of embryonic/developmental genes in aging. , 2022, 1, .		2
76	The quest to understand aging during and after COVID-19. Cell Stem Cell, 2021, 28, 805-807.	5.2	0
77	Opening up the black box of human cell plasticity. Innovation(China), 2022, 3, 100276.	5.2	0