
## Hamad Rahman Jappor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647249/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Advances, 2019, 9, 33207-33221.                                  | 1.7 | 123       |
| 2  | Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications. Superlattices and Microstructures, 2019, 125, 1-7. | 1.4 | 77        |
| 3  | First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Physical Chemistry Chemical Physics, 2020, 22, 15354-15364.                       | 1.3 | 74        |
| 4  | Janus monolayer PtSSe under external electric field and strain: A first principles study on electronic structure and optical properties. Superlattices and Microstructures, 2020, 147, 106683.                    | 1.4 | 69        |
| 5  | A Dirac-semimetal two-dimensional BeN4: Thickness-dependent electronic and optical properties.<br>Applied Physics Letters, 2021, 118, .                                                                           | 1.5 | 64        |
| 6  | Electronic and magnetic properties of single-layer boron phosphide associated with materials processing defects. Computational Materials Science, 2019, 170, 109201.                                              | 1.4 | 63        |
| 7  | Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals<br>heterostructures with the potential for photovoltaic applications. Chemical Physics Letters, 2019,<br>728, 124-131.     | 1.2 | 63        |
| 8  | Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chemical Physics, 2020, 532, 110679.                                 | 0.9 | 63        |
| 9  | Strain-tunable electronic and optical properties of monolayer GeSe: Promising for photocatalytic water splitting applications. Chemical Physics, 2020, 529, 110543.                                               | 0.9 | 60        |
| 10 | Two-dimensional porous graphitic carbon nitride C6N7 monolayer: First-principles calculations.<br>Applied Physics Letters, 2021, 119, .                                                                           | 1.5 | 57        |
| 11 | Ab-initio-driven prediction of puckered penta-like PdPSeX (X O, S, Te) Janus monolayers: Study on the electronic, optical, mechanical and photocatalytic properties. Applied Surface Science, 2022, 582, 152356.  | 3.1 | 55        |
| 12 | Tuning the electronic structure of 2D materials by strain and external electric field: Case of Gel2 monolayer. Chemical Physics, 2019, 527, 110499.                                                               | 0.9 | 53        |
| 13 | Two-dimensional penta-like PdPSe with a puckered pentagonal structure: a first-principles study.<br>Physical Chemistry Chemical Physics, 2022, 24, 9990-9997.                                                     | 1.3 | 53        |
| 14 | Two-dimensional XY monolayers (X = Al, Ga, In; Y = N, P, As) with a double layer hexagonal structure: A first-principles perspective. Applied Surface Science, 2022, 590, 152998.                                 | 3.1 | 53        |
| 15 | Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors. Chemical Physics Letters, 2018, 713, 46-51.                                        | 1.2 | 52        |
| 16 | Tunable electronic and optical properties of GaS/GaSe van der Waals heterostructure. Current<br>Applied Physics, 2018, 18, 673-680.                                                                               | 1.1 | 51        |
| 17 | Two-dimensional carbon nitride C <sub>6</sub> N nanosheet with egg-comb-like structure and electronic properties of a semimetal. Nanotechnology, 2021, 32, 215702.                                                | 1.3 | 50        |
| 18 | Adsorption of molecules on C3N nanosheet: A first-principles calculations. Chemical Physics, 2019, 526, 110442.                                                                                                   | 0.9 | 49        |

| #  | Article                                                                                                                                                                                                                                                                   | IF               | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study.<br>Journal of Physics Condensed Matter, 2022, 34, 015001.                                                                                                             | 0.7              | 45                |
| 20 | First principles study of single-layer SnSe2 under biaxial strain and electric field: Modulation of electronic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 201-205.                                                                     | 1.3              | 44                |
| 21 | Two-dimensional ZnI2 monolayer as a photocatalyst for water splitting and improvement its electronic and optical properties by strains. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114487.                                                         | 1.3              | 44                |
| 22 | Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 18752-18759.                                                                                             | 1.3              | 44                |
| 23 | Ab initio prediction of semiconductivity in a novel two-dimensional Sb2X3 (X= S, Se, Te) monolayers with orthorhombic structure. Scientific Reports, 2021, 11, 10366.                                                                                                     | 1.6              | 44                |
| 24 | Tuning optical and electronic properties of 2D ZnI2/CdS heterostructure by biaxial strains for optical nanodevices: A first-principles study. Journal of Applied Physics, 2021, 129, .                                                                                    | 1.1              | 44                |
| 25 | Two-dimensional FeTe <sub>2</sub> and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties <i>via</i> strain and electric field. Physical Chemistry Chemical Physics, 2021, 23, 24336-24343. | 1.3              | 44                |
| 26 | The electronic, half-metallic, and magnetic properties of Ca1-Cr S ternary alloys: Insights from the first-principle calculations. Journal of Molecular Graphics and Modelling, 2019, 89, 22-32.                                                                          | 1.3              | 43                |
| 27 | Prediction of two-dimensional bismuth-based chalcogenides Bi <sub>2</sub> X <sub>3</sub> (X = S, Se,) Tj ETQq1<br>Physics, 2021, 54, 395103.                                                                                                                              | 1 0.78431<br>1.3 | 14 rgBT /O∨<br>42 |
| 28 | Assessing optoelectronic properties of PbI2 monolayer under uniaxial strain from first principles calculations. Superlattices and Microstructures, 2019, 130, 354-360.                                                                                                    | 1.4              | 41                |
| 29 | Electronic band structure, thermodynamics and optical characteristics of BeO1â^'A (A = S, Se, Te) alloys:<br>Insights from ab initio study. Chemical Physics, 2019, 526, 110414.                                                                                          | 0.9              | 39                |
| 30 | Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures. Applied Physics Letters, 2021, 118, .                                                                                                 | 1.5              | 39                |
| 31 | Electronic Properties of Adsorption of CO, CO <sub>2</sub> , NH <sub>3</sub> , NO, NO <sub>2</sub><br>and SO <sub>2</sub> on Nitrogen Doped Graphene for Gas Sensor Applications. Sensor Letters, 2017, 15,<br>432-439.                                                   | 0.4              | 35                |
| 32 | Electronic Properties of CO and CO <sub>2</sub> Adsorbed Silicene/Graphene Nanoribbons<br>as a Promising Candidate for a Metal-Free Catalyst and a Gas Sensor. Sensor Letters, 2016, 14, 989-995.                                                                         | 0.4              | 34                |
| 33 | Electronic and Structural Properties of Gas Adsorbed Graphene-Silicene Hybrid as a Gas Sensor.<br>Journal of Nanoelectronics and Optoelectronics, 2017, 12, 742-747.                                                                                                      | 0.1              | 33                |
| 34 | Simulation of Electronic Structure of Aluminum Phosphide Nanocrystals Using Ab Initio Large Unit<br>Cell Method. Advances in Materials Science and Engineering, 2012, 2012, 1-6.                                                                                          | 1.0              | 29                |
| 35 | Semiconducting Chalcogenide Alloys Based on the (Ge, Sn, Pb) (S, Se, Te) Formula with Outstanding<br>Properties: A First-Principles Calculation Study. ACS Omega, 2021, 6, 9433-9441.                                                                                     | 1.6              | 20                |
| 36 | Puckered Penta-like PdPX (X = O, S, Te) Semiconducting Nanosheets: First-Principles Study of the<br>Mechanical, Electro-Optical, and Photocatalytic Properties. ACS Applied Materials & Interfaces,<br>2022, 14, 21577-21584.                                             | 4.0              | 19                |

| #  | Article                                                                                                                                                                                                                                                                    | IF               | CITATIONS                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|
| 37 | Investigation of vacancy defects and substitutional doping in AISb monolayer with double layer<br>honeycomb structure: a first-principles calculation. Journal of Physics Condensed Matter, 2022, 34,<br>065701.                                                           | 0.7              | 18                         |
| 38 | Prediction of two-dimensional AlBrSe monolayer as a highly efficient photocatalytic for water splitting. Surfaces and Interfaces, 2022, 31, 102020.                                                                                                                        | 1.5              | 18                         |
| 39 | Electronic, optical and thermoelectric properties of a novel two-dimensional SbXY (X = Se, Te; Y = Br, I)<br>family: <i>ab initio</i> perspective. Physical Chemistry Chemical Physics, 2021, 23, 25866-25876.                                                             | 1.3              | 17                         |
| 40 | Structural, electronic and optical properties of ABTe2 (A = Li, Na, K, Rb, Cs and B = Sc, Y, La): Insights from first-principles computations. Journal of Solid State Chemistry, 2019, 279, 120954.                                                                        | 1.4              | 13                         |
| 41 | Electronic Structure of AlP Under Pressure Using Semiempirical Method. The Open Condensed Matter<br>Physics Journal, 2010, 3, 1-7.                                                                                                                                         | 0.2              | 12                         |
| 42 | Theoretical study of thermal conductivity, mechanical, vibrational and thermodynamical properties<br>of Ln2Zr2O7 (LnÂ=ÂLa, Nd, Sm, and Eu) pyrochlore. Inorganic Chemistry Communication, 2021, 127, 108495.                                                               | 1.8              | 9                          |
| 43 | Tilted electric field effects on the electronic states in a GaAs quantum disk. Superlattices and Microstructures, 2012, 52, 1078-1082.                                                                                                                                     | 1.4              | 7                          |
| 44 | Electronic band structure, elastic, optical and thermodynamic characteristic of cubic YF3: An ab initio study. Optik, 2021, 239, 166680.                                                                                                                                   | 1.4              | 7                          |
| 45 | Al-Doped Graphene as a Sensor for Harmful Gases (CO, CO <sub>2</sub> , NH <sub>3</sub> , NO,) Tj ETQq1 1 0.                                                                                                                                                                | 784314 rg<br>0.4 | gBT <sub>7</sub> /Overlock |
| 46 | Tunable electronic properties of InSe by biaxial strain: from bulk to single-layer. Materials Research<br>Express, 2019, 6, 115002.                                                                                                                                        | 0.8              | 6                          |
| 47 | Insight view of mechanical, electronic and thermodynamic properties of the novel intermetallic<br>\$\$hbox {REPt}_{{4}}\$\$ \$\$hbox {In}_{{4}}\$\$ (RE \$\$=\$\$ Eu, Gd, Tb, Dy, Ho) compounds via ab initio<br>calculations. Bulletin of Materials Science, 2020, 43, 1. | 0.8              | 3                          |
| 48 | Electronic Structure Properties of Twisted Armchair (3, 3) and Zigzag (5, 0) Carbon Nanotube: A<br>Density Functional Study. Materials Focus, 2016, 5, 158-164.                                                                                                            | 0.4              | 2                          |
| 49 | Structural, Electronic and Optical Properties of Transition Metal Dichalcogenides Layer PtS <sub>2<br/></sub> (Se <sub>2</sub> ) for Nano Devices Applications. Key Engineering Materials, 0, 886, 48-56.                                                                  | 0.4              | 1                          |
| 50 | Hydrogenation of Zigzag (5, 0) and (6, 0) Single-Walled Carbon Nanotubes Using Density Functional<br>Theory. Journal of Advanced Physics, 2016, 5, 140-144.                                                                                                                | 0.4              | 1                          |
| 51 | Electronic and Optical Properties of Indium Selenide Nanosheet Using First-Principle Calculations.<br>Advanced Science, Engineering and Medicine, 2019, 11, 1148-1154.                                                                                                     | 0.3              | Ο                          |