Qingwen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3–R4 domains revealed by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2021, 23, 20615-20626.	1.3	18
2	Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Physical Chemistry Chemical Physics, 2021, 23, 20406-20418.	1.3	16
3	Serotonin and Melatonin Show Different Modes of Action on Aβ ₄₂ Protofibril Destabilization. ACS Chemical Neuroscience, 2021, 12, 799-809.	1.7	24
4	Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer's disease-related tau R3-R4 Protofilament by norepinephrine. Biophysical Chemistry, 2021, 271, 106541.	1.5	13
5	Trends in HSPB5 research: a 36-year bibliometric analysis. Cell Stress and Chaperones, 2021, 26, 799-810.	1.2	1
6	Unfixed Movement Route Model, Non-Overcrowding and Social Distancing Reduce the Spread of COVID-19 in Sporting Facilities. International Journal of Environmental Research and Public Health, 2021, 18, 8212.	1.2	3
7	Critical nucleus of Greek-key-like core of α-synuclein protofibril and its disruption by dopamine and norepinephrine. Physical Chemistry Chemical Physics, 2020, 22, 203-211.	1.3	22
8	Distinct Binding Dynamics, Sites and Interactions of Fullerene and Fullerenols with Amyloid-β Peptides Revealed by Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2019, 20, 2048.	1.8	28
9	Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study. ACS Chemical Neuroscience, 2019, 10, 1585-1594.	1.7	83
10	Atomistic-level study of the interactions between hIAPP protofibrils and membranes: Influence of pH and lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1818-1825.	1.4	33
11	Proline hydroxylation at different sites in hypoxia-inducible factor 1α modulates its interactions with the von Hippel–Lindau tumor suppressor protein. Physical Chemistry Chemical Physics, 2018, 20, 18756-18765.	1.3	7
12	Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity. Journal of Physical Chemistry B, 2017, 121, 508-517.	1.2	2
13	Orcein-Related Small Molecule O4 Destabilizes hIAPP Protofibrils by Interacting Mostly with the Amyloidogenic Core Region. Journal of Physical Chemistry B, 2017, 121, 9203-9212.	1.2	30
14	Assemblies of amyloid-β30–36 hexamer and its G33V/L34T mutants by replica-exchange molecular dynamics simulation. PLoS ONE, 2017, 12, e0188794.	1.1	13
15	Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms. ACS Nano, 2016, 10, 8316-8324.	7.3	84
16	Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Scientific Reports, 2016, 6, 33076.	1.6	79
17	Temperature-Dependent Conformational Properties of Human Neuronal Calcium Sensor-1 Protein Revealed by All-Atom Simulations. Journal of Physical Chemistry B, 2016, 120, 3551-3559.	1.2	4
18	Critical Nucleus Structure and Aggregation Mechanism of the C-terminal Fragment of Copper–Zinc Superoxide Dismutase Protein. ACS Chemical Neuroscience, 2016, 7, 286-296.	1.7	32

#	Article	IF	CITATIONS
19	Effects of the C-Terminal Tail on the Conformational Dynamics of Human Neuronal Calcium Sensor-1 Protein. Journal of Physical Chemistry B, 2015, 119, 14236-14244.	1.2	5
20	R102Q Mutation Shifts the Salt-Bridge Network and Reduces the Structural Flexibility of Human Neuronal Calcium Sensor-1 Protein. Journal of Physical Chemistry B, 2014, 118, 13112-13122.	1.2	12