

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6647029/publications.pdf

Boli

#	Article	IF	CITATIONS
1	Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9, 1076.	5.8	507
2	Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH ₃ NH ₃ PbI ₃ Film. Advanced Energy Materials, 2017, 7, 1602017.	10.2	291
3	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
4	Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3752-3772.	8.8	143
5	Efficient Passivation Strategy on Sn Related Defects for High Performance Allâ€Inorganic CsSnI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007447.	7.8	128
6	Prussion Blue-Supported Annealing Chemical Reaction Route Synthesized Double-Shelled Fe ₂ O ₃ /Co ₃ O ₄ Hollow Microcubes as Anode Materials for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 8098-8107.	4.0	111
7	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	18.7	91
8	PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. Journal of Power Sources, 2017, 360, 11-20.	4.0	84
9	Graded Heterojunction Engineering for Hole onductorâ€Free Perovskite Solar Cells with High Hole Extraction Efficiency and Conductivity. Advanced Materials, 2017, 29, 1701221.	11.1	80
10	High-Voltage-Efficiency Inorganic Perovskite Solar Cells in a Wide Solution-Processing Window. Journal of Physical Chemistry Letters, 2018, 9, 3646-3653.	2.1	63
11	Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies. Journal of Materials Chemistry A, 2019, 7, 20494-20518.	5.2	62
12	A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13263-13270.	5.2	57
13	Efficient and Stable Tin Perovskite Solar Cells by Pyridineâ€Functionalized Fullerene with Reduced Interfacial Energy Loss. Advanced Functional Materials, 2022, 32, .	7.8	49
14	Continuous Size Tuning of Monodispersed ZnO Nanoparticles and Its Size Effect on the Performance of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 9785-9794.	4.0	43
15	Efficient Bulk Defect Suppression Strategy in FASnI ₃ Perovskite for Photovoltaic Performance Enhancement. Advanced Functional Materials, 2022, 32, 2107710.	7.8	40
16	MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells. Electrochimica Acta, 2020, 330, 135280.	2.6	38
17	Novel Au inlaid Zn ₂ SnO ₄ /SnO ₂ hollow rounded cubes for dye-sensitized solar cells with enhanced photoelectric conversion performance. Journal of Materials Chemistry A, 2016, 4, 466-477.	5.2	35
18	Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI ₃ perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 22539-22549.	5.2	35

Bo Li

#	Article	IF	CITATIONS
19	Efficient electron transfer layer based on Al 2 O 3 passivated TiO 2 nanorod arrays for high performance evaporation-route deposited FAPbI 3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 170, 187-196.	3.0	31
20	Fluorescence resonance energy transfer effect enhanced high performance of Si quantum Dots/CsPbBr3 inverse opal heterostructure perovskite solar cells. Journal of Power Sources, 2019, 439, 227065.	4.0	29
21	Bismuth Telluride Interlayer for Allâ€Inorganic Perovskite Solar Cells with Enhanced Efficiency and Stability. Solar Rrl, 2019, 3, 1900233.	3.1	27
22	Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film. Journal of Materials Chemistry A, 2019, 7, 22229-22234.	5.2	23
23	Enhanced optical absorption and efficient cascade electron extraction based on energy band alignment double absorbers perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 168-176.	3.0	20
24	One-step-spin-coating route for homogeneous perovskite/pyrrole-C60 fullerene bulk heterojunction for high performance solar cells. Journal of Power Sources, 2019, 419, 27-34.	4.0	16
25	Thiazoleâ€Modified C ₃ N ₄ Interfacial Layer for Defect Passivation and Charge Transport Promotion in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000720.	3.1	16
26	Polyethylene Glycol Polymer Scaffold Induced Intermolecular Interactions for Crystallization Regulation and Defect Passivation in FASnI ₃ Films. ACS Applied Energy Materials, 2021, 4, 3622-3632.	2.5	13
27	Sb2Se3/CsPbBrI2 All-Inorganic p–n Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 9550-9557.	2.5	4