Michelle Newcomer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66468/publications.pdf

Version: 2024-02-01

21 papers 587 citations

687363 13 h-index 713466 21 g-index

28 all docs $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

times ranked

28

782 citing authors

#	Article	IF	CITATIONS
1	Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions. Hydrology and Earth System Sciences, 2022, 26, 429-444.	4.9	19
2	Can machine learning accelerate process understanding and decisionâ€relevant predictions of river water quality?. Hydrological Processes, 2022, 36, .	2.6	26
3	Variability of Snow and Rainfall Partitioning Into Evapotranspiration and Summer Runoff Across Nine Mountainous Catchments. Geophysical Research Letters, 2022, 49, .	4.0	6
4	Machine-Learning Functional Zonation Approach for Characterizing Terrestrial–Aquatic Interfaces: Application to Lake Erie. Remote Sensing, 2022, 14, 3285.	4.0	4
5	Modeling the Impact of Riparian Hollows on River Corridor Nitrogen Exports. Frontiers in Water, 2021, 3, .	2.3	15
6	Modeling geogenic and atmospheric nitrogen through the East River Watershed, Colorado Rocky Mountains. PLoS ONE, 2021, 16, e0247907.	2.5	9
7	Hysteresis Patterns of Watershed Nitrogen Retention and Loss Over the Past 50Âyears in United States Hydrological Basins. Global Biogeochemical Cycles, 2021, 35, e2020GB006777.	4.9	29
8	Meanders as a scaling motif for understanding of floodplain soil microbiome and biogeochemical potential at the watershed scale. Microbiome, 2021, 9, 121.	11.1	11
9	Predicting algal blooms: Are we overlooking groundwater?. Science of the Total Environment, 2021, 769, 144442.	8.0	35
10	Hydrological analysis in watersheds with a variable-resolution global climate model (VR-CESM). Journal of Hydrology, 2021, 601, 126646.	5.4	8
11	A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms. Scientific Reports, 2021, 11, 19944.	3.3	8
12	Determining the impact of a severe dry to wet transition on watershed hydrodynamics in California, USA with an integrated hydrologic model. Journal of Hydrology, 2020, 580, 124358.	5.4	12
13	Wavelet-based local mesh refinement for rainfall–runoff simulations. Journal of Hydroinformatics, 2020, 22, 1059-1077.	2.4	14
14	Differential C-Q Analysis: A New Approach to Inferring Lateral Transport and Hydrologic Transients Within Multiple Reaches of a Mountainous Headwater Catchment. Frontiers in Water, 2020, 2, .	2.3	24
15	Depth―and Timeâ€Resolved Distributions of Snowmeltâ€Driven Hillslope Subsurface Flow and Transport and Their Contributions to Surface Waters. Water Resources Research, 2019, 55, 9474-9499.	4.2	25
16	Influence of Hydrological Perturbations and Riverbed Sediment Characteristics on Hyporheic Zone Respiration of CO ₂ and N ₂ . Journal of Geophysical Research G: Biogeosciences, 2018, 123, 902-922.	3.0	56
17	Geochemical Exports to River From the Intrameander Hyporheic Zone Under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado. Water Resources Research, 2018, 54, 8456-8477.	4.2	66
18	Simulating bioclogging effects on dynamic riverbed permeability and infiltration. Water Resources Research, 2016, 52, 2883-2900.	4.2	57

#	Article	IF	CITATION
19	Estuarine sediment deposition during wetland restoration: A GIS and remote sensing modeling approach. Geocarto International, 2014, 29, 451-467.	3.5	10
20	Urban recharge beneath low impact development and effects of climate variability and change. Water Resources Research, 2014, 50, 1716-1734.	4.2	86
21	Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals. International Journal of Environmental Research and Public Health, 2011, 8, 1936-1956.	2.6	58