Jean Rancourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664647/publications.pdf

Version: 2024-02-01

28 papers 2,285 citations

³⁹⁴⁴²¹ 19 h-index 477307 29 g-index

29 all docs 29 docs citations

times ranked

29

1767 citing authors

#	Article	IF	CITATIONS
1	Conformation-Based Restrictions and Scaffold Replacements in the Design of Hepatitis C Virus Polymerase Inhibitors: Discovery of Deleobuvir (BI 207127). Journal of Medicinal Chemistry, 2014, 57, 1845-1854.	6.4	32
2	Anthranilic acid-based Thumb Pocket 2 HCV NS5B polymerase inhibitors with sub-micromolar potency in the cell-based replicon assay. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6879-6885.	2.2	14
3	Allosteric <i>N-</i> acetamide-indole-6-carboxylic acid thumb pocket 1 inhibitors of hepatitis C virus NS5B polymeraseÂâ \in " Acylsulfonamides and acylsulfamides as carboxylic acid replacements. Canadian Journal of Chemistry, 2013, 91, 66-81.	1.1	2
4	Discovery of a novel series of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2585-2589.	2.2	19
5	Novel Inhibitor Binding Site Discovery on HIV-1 Capsid N-Terminal Domain by NMR and X-ray Crystallography. ACS Chemical Biology, 2013, 8, 1074-1082.	3.4	45
6	Optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of HIV capsid assembly inhibitors 2: Structure–activity relationships (SAR) of the C3-phenyl moiety. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3401-3405.	2.2	19
7	Distinct Effects of Two HIV-1 Capsid Assembly Inhibitor Families That Bind the Same Site within the N-Terminal Domain of the Viral CA Protein. Journal of Virology, 2012, 86, 6643-6655.	3.4	110
8	Biphenylsulfonacetic Acid Inhibitors of the Human Papillomavirus Type 6 E1 Helicase Inhibit ATP Hydrolysis by an Allosteric Mechanism Involving Tyrosine 486. Antimicrobial Agents and Chemotherapy, 2005, 49, 4834-4842.	3. 2	41
9	Inhibitors of Respiratory Syncytial Virus Replication Target Cotranscriptional mRNA Guanylylation by Viral RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 13105-13115.	3.4	112
10	A Systematic Approach to the Optimization of Substrate-Based Inhibitors of the Hepatitis C Virus NS3 Protease:Â Discovery of Potent and Specific Tripeptide Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 6584-6594.	6.4	110
11	Discovery of Small-Molecule Inhibitors of the ATPase Activity of Human Papillomavirus E1 Helicase. Journal of Medicinal Chemistry, 2004, 47, 18-21.	6.4	113
12	Peptide-Based Inhibitors of the Hepatitis C Virus NS3 Protease:Â Structureâ 'Activity Relationship at the C-Terminal Position. Journal of Medicinal Chemistry, 2004, 47, 2511-2522.	6.4	67
13	An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature, 2003, 426, 186-189.	27.8	881
14	Nonpeptidic, Monocharged, Cell Permeable Ligands for the p56lck SH2 Domain. Journal of Medicinal Chemistry, 2001, 44, 2421-2431.	6.4	15
15	Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease: towards smaller inhibitors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2267-2270.	2.2	107
16	Phosphotyrosine-Containing Dipeptides as High-Affinity Ligands for the p56lckSH2 Domain. Journal of Medicinal Chemistry, 1999, 42, 722-729.	6.4	16
17	Ligands for the Tyrosine Kinase p56lckSH2 Domain:Â Discovery of Potent Dipeptide Derivatives with Monocharged, Nonhydrolyzable Phosphate Replacements. Journal of Medicinal Chemistry, 1999, 42, 1757-1766.	6.4	60
18	Generation of glycinyl radicals via a 1,5-hydrogen atom transfer reaction. Applications to \hat{I}^3 -lactam formation. Tetrahedron Letters, 1998, 39, 5339-5342.	1.4	19

#	Article	IF	CITATION
19	Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2719-2724.	2.2	96
20	Role of .sigmaDonation in the Stereocontrol of Hydrogen-Transfer Reactions Involving Acyclic Radicals. Journal of Organic Chemistry, 1995, 60, 288-289.	3.2	33
21	Stereoselective Hydrogen Transfer Reactions Involving Acyclic Radicals. Tandem Substituted Tetrahydrofuran Formation and Stereoselective Reduction: Synthesis of the C17-C22 Subunit of Ionomycin. Journal of Organic Chemistry, 1994, 59, 1166-1178.	3.2	55
22	Cyclopropanation in vinyl radical cyclizations: The importance of structural constraints Tetrahedron Letters, 1993, 34, 2091-2094.	1.4	26
23	The effect of polar substituents on the conformation and stereochemistry of enolate radicals. Tetrahedron Letters, 1993, 34, 5885-5888.	1.4	77
24	Stereoselective hydrogen-transfer reactions involving acyclic radicals. A study of radical conformations using semiempirical calculations. Journal of the American Chemical Society, 1992, 114, 4912-4914.	13.7	58
25	Stereoselective chelation-controlled reduction of .alphaiodobetaalkoxy esters under radical conditions. Journal of the American Chemical Society, 1991, 113, 9701-9702.	13.7	86
26	Tetrahydropyran synthesis via radical cyclization. A systematic study of substituent effects. Journal of the American Chemical Society, 1991, 113, 2335-2336.	13.7	36
27	Chiral synthetic macrodiolide and macrotriolide ionophores with C2- and C2symmetry. Tetrahedron Letters, 1990, 31, 5285-5288.	1.4	19
28	Total regiospecific synthesis of the selagine tricyclic ring system. Canadian Journal of Chemistry, 1984, 62, 2945-2947.	1.1	7