David Cameron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6646206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process. Thin Solid Films, 1994, 238, 83-87.	0.8	336
2	Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	296
3	Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films, 2000, 377-378, 455-459.	0.8	281
4	MBEâ€grown fluoride films: A new class of epitaxial dielectrics. Journal of Vacuum Science and Technology, 1981, 19, 415-420.	1.9	179
5	Vibrational properties of carbon nitride films by Raman spectroscopy. Thin Solid Films, 1998, 332, 62-68.	0.8	151
6	Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films, 2002, 420-421, 76-82.	0.8	150
7	Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1642-1646.	0.9	144
8	Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2002, 25, 137-145.	1.1	137
9	Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Films, 1996, 280, 221-226.	0.8	135
10	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	1.6	73
11	Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process. Surface and Coatings Technology, 2001, 142-144, 776-780.	2.2	71
12	Titanium dioxide thin films, their structure and its effect on their photoactivity and photocatalytic properties. Thin Solid Films, 2009, 517, 6666-6670.	0.8	69
13	Effect of surface treatment on the adhesion of DLC film on 316L stainless steel. Surface and Coatings Technology, 2003, 163-164, 541-545.	2.2	66
14	Review Article: Recommended reading list of early publications on atomic layer deposition—Outcome of the "Virtual Project on the History of ALD― Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	65
15	Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties. Thin Solid Films, 2011, 519, 3146-3154.	0.8	61
16	Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature. Surface and Coatings Technology, 1999, 112, 133-139.	2.2	58
17	An atomic layer deposition process for moving flexible substrates. Chemical Engineering Journal, 2011, 171, 345-349.	6.6	58
18	The characteristics of thin film electroluminescent displays produced using sol–gel produced tantalum pentoxide and zinc sulfide. Thin Solid Films, 2004, 447-448, 85-89	0.8	53

#	Article	IF	CITATIONS
19	Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	53
20	Adhesion of Ti and TiC Coatings on PMMA Subject to Plasma Treatment: Effect of Intermediate Layers of Al ₂ O ₃ and TiO ₂ Deposited by Atomic Layer Deposition. Plasma Processes and Polymers, 2009, 6, 631-641.	1.6	52
21	Plasma-Assisted Atomic Layer Deposition of Al2O3at Room Temperature. Plasma Processes and Polymers, 2009, 6, S237-S241.	1.6	52
22	Atomic layer deposited TiO2 films in photodegradation of aqueous salicylic acid. Separation and Purification Technology, 2009, 66, 130-134.	3.9	48
23	Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst. Fuel, 2015, 144, 137-144.	3.4	45
24	Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 2010, 264, 249-255.	4.0	43
25	Utilisation of continuous atomic layer deposition process for barrier enhancement of extrusion-coated paper. Surface and Coatings Technology, 2011, 205, 3916-3922.	2.2	43
26	PECVD of biocompatible coatings on 316L stainless steel. Surface and Coatings Technology, 2005, 200, 1031-1035.	2.2	42
27	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	2.6	40
28	Zinc sulfide thin films produced by sulfidation of sol–gel deposited zinc oxide. Thin Solid Films, 2001, 398-399, 24-28.	0.8	39
29	Molecular layer deposition of polyethylene terephthalate thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	38
30	Magnetron sputtering of tin protective coatings for medical applications. Journal of Materials Processing Technology, 1996, 56, 422-430.	3.1	37
31	Growth of CuCl thin films by magnetron sputtering for ultraviolet optoelectronic applications. Journal of Applied Physics, 2006, 100, 033520.	1.1	37
32	Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Separation and Purification Technology, 2018, 192, 69-77.	3.9	36
33	Electrical properties of reactively sputtered CNx films. Thin Solid Films, 1999, 341, 94-100.	0.8	35
34	Chemical and microstructural modifications in LiPON thin films exposed to atmospheric humidity. Solid State Ionics, 2011, 185, 47-51.	1.3	34
35	Low temperature temporal and spatial atomic layer deposition of TiO2 films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	34
36	Evidence for continuous areas of crystalline β–C ₃ N ₄ in sputter-deposited thin films. Journal of Materials Research, 1999, 14, 2359-2363.	1.2	33

#	Article	IF	CITATIONS
37	Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli. Applied Surface Science, 2013, 287, 375-380.	3.1	33
38	Optical and electronic properties of carbon nitride. Surface and Coatings Technology, 2003, 169-170, 245-250.	2.2	32
39	Plasma deposition of cubic boron nitride films from non-toxic material at low temperatures. Surface and Coatings Technology, 1991, 49, 416-421.	2.2	31
40	Room-temperature ultraviolet luminescence from γ-CuCl grown on near lattice-matched silicon. Journal of Applied Physics, 2005, 98, 113512.	1.1	31
41	Structural variations in CrN/NbN superlattices. Surface and Coatings Technology, 2001, 142-144, 567-572.	2.2	30
42	Magnetron-sputtered carbon nitride (CNx) films. Surface and Coatings Technology, 1995, 74-75, 696-703.	2.2	29
43	Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. Journal of Materials Processing Technology, 2003, 141, 127-131.	3.1	29
44	The deposition of insulators onto InP using plasma-enhanced chemical vapour deposition. Thin Solid Films, 1981, 85, 61-69.	0.8	27
45	InP metal/oxide/semiconductor devices incorporating Al2O3 dielectrics chemically vapour deposited at low pressure. Thin Solid Films, 1982, 91, 339-348.	0.8	26
46	Electrochemical deposition of prussian blue films across interdigital array electrodes and their use in gas sensing. Electroanalysis, 1996, 8, 195-198.	1.5	26
47	The composition and bonding structure of CNx films and their influence on the mechanical properties. Thin Solid Films, 1997, 308-309, 130-134.	0.8	25
48	Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sensors and Actuators B: Chemical, 2010, 148, 227-232.	4.0	24
49	Continuous atomic layer deposition: Explanation for anomalous growth rate effects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A122.	0.9	23
50	Spatial atomic layer deposition: Performance of low temperature H2O and O3 oxidant chemistry for flexible electronics encapsulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	23
51	Characterization of mixed-phase BN thin films deposited by plasma CVD. Surface and Coatings Technology, 1993, 60, 502-505.	2.2	22
52	Properties of mixed-phase BN films deposited by r.f. PACVD. Thin Solid Films, 1993, 236, 96-102.	0.8	22
53	Growth and characterisation of wide-bandgap, I-VII optoelectronic materials on silicon. Journal of Materials Science: Materials in Electronics, 2005, 16, 415-419.	1.1	22
54	Surface modification of polymers by plasma-assisted atomic layer deposition. Surface and Coatings Technology, 2011, 205, S475-S479.	2.2	22

#	Article	IF	CITATIONS
55	The structural and electron transport properties of CdS grown by molecular beam epitaxy. Thin Solid Films, 1979, 58, 61-66.	0.8	20
56	Interaction of Plasma Deposited HMDSO-Based Coatings with Fibrinogen and Human Blood Plasma: The Correlation between Bulk Plasma, Surface Characteristics and Biomolecule Interaction. Plasma Processes and Polymers, 2010, 7, 411-421.	1.6	20
57	Adhesion of carbon nitride thin films on tool steel. Surface and Coatings Technology, 1999, 116-119, 46-53.	2.2	19
58	Impact on structural, optical and electrical properties of CuCl by incorporation of Zn for n-type doping. Journal of Crystal Growth, 2006, 287, 139-144.	0.7	19
59	Catalytic Performance of Ag2O and Ag Doped CeO2 Prepared by Atomic Layer Deposition for Diesel Soot Oxidation. Coatings, 2018, 8, 237.	1.2	19
60	Pre-treatment of substrates for improved adhesion of diamond-like carbon films on surgically implantable metals deposited by saddle field neutral beam source. Surface and Coatings Technology, 2003, 174-175, 579-583.	2.2	18
61	Encapsulation of the heteroepitaxial growth of wide band gap Î ³ -CuCl on silicon substrates. Journal of Crystal Growth, 2006, 287, 112-117.	0.7	18
62	Investigation of the valence band states of reactively sputtered carbon nitride films. Thin Solid Films, 1999, 355-356, 79-84.	0.8	17
63	Magnetron sputtered carbon nitride films. Surface and Coatings Technology, 1994, 68-69, 188-193.	2.2	16
64	UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition. Thin Solid Films, 2014, 570, 33-37.	0.8	16
65	Mechanical properties of atomic layer deposited Al2O3/ZnO nanolaminates. Surface and Coatings Technology, 2015, 284, 198-205.	2.2	16
66	Planar self-aligned ion-implanted InP MOSFET. Electronics Letters, 1982, 18, 534.	0.5	15
67	Effect of substrate bias on the bonding structure of carbon nitride thin films. Thin Solid Films, 1999, 355-356, 85-88.	0.8	15
68	Measuring optical anisotropy in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films with added graphene. Organic Electronics, 2015, 25, 317-323.	1.4	15
69	Atomic layer deposition—A novel method for the ultrathin coating of minitablets. International Journal of Pharmaceutics, 2017, 531, 47-58.	2.6	15
70	The effect of nitrogen partial pressure on the bonding in sputtered CNx films: implications for formation of Î ² -C3N4. Surface and Coatings Technology, 2000, 131, 488-492.	2.2	14
71	Adhesion of extrusionâ€coated polymer sealing layers to a fiberâ€based packaging material with an atomic layer deposited aluminum oxide surface coating. Polymer Engineering and Science, 2012, 52, 1985-1990.	1.5	14
72	Ambient air plasma preâ€treatment of nonâ€woven fabrics for deposition of antibacterial poly (<scp>l</scp> â€lactide) nanoparticles. Plasma Processes and Polymers, 2017, 14, 1600231.	1.6	14

#	Article	IF	CITATIONS
73	Electrical properties of reactively sputtered carbon nitride films. Surface and Coatings Technology, 1999, 116-119, 54-58.	2.2	13
74	On the ion flux and energy gain during pulsed DC operation of an opposed target magnetron. Surface and Coatings Technology, 2006, 200, 5306-5317.	2.2	13
75	Evaluation of the chemical, electronic and optoelectronic properties of γ-CuCl thin films and their fabrication on Si substrates. Journal Physics D: Applied Physics, 2007, 40, 3461-3467.	1.3	13
76	A Comparative Study of Characteristics of SiOxCyHz, TiOx and SiO-TiO Oxide-Based Biocompatible Coatings. Plasma Processes and Polymers, 2007, 4, S369-S373.	1.6	13
77	Nanoscratch testing of atomic layer deposition and magnetron sputtered TiO2and Al2O3coatings on polymeric substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A132.	0.9	13
78	Attachment of Poly(<scp>l</scp> -lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing. Macromolecular Bioscience, 2015, 15, 1274-1282.	2.1	12
79	Structural and Optical Properties of Luminescent Copper(I) Chloride Thin Films Deposited by Sequentially Pulsed Chemical Vapour Deposition. Coatings, 2018, 8, 369.	1.2	12
80	Optical properties of DLC films deposited by the saddle field fast atom neutral beam source. Journal of Materials Processing Technology, 2005, 169, 219-222.	3.1	11
81	Influence of oxygen depletion layer on the properties of tin oxide gas-sensing films fabricated by atomic layer deposition. Applied Physics A: Materials Science and Processing, 2009, 95, 621-627.	1.1	11
82	Atomic layer deposition of CuCl nanoparticles. Applied Physics Letters, 2010, 97, .	1.5	11
83	Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating. Applied Surface Science, 2013, 282, 506-511.	3.1	11
84	Pulsed dc operation of a Penning-type opposed target magnetron. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 66-71.	0.9	10
85	Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide. Thin Solid Films, 2012, 526, 212-217.	0.8	10
86	The importance of the majority carrier polarity and p-n junction in titanium dioxide films to their photoactivity and photocatalytic properties. Surface Science, 2012, 606, L22-L25.	0.8	10
87	Influence of substrate contamination, web handling, and pretreatments on the barrier performance of aluminum oxide atomic layer-deposited BOPP film. Journal of Coatings Technology Research, 2014, 11, 775-784.	1.2	10
88	Surface chemistry and initial growth of Al 2 O 3 on plasma modified PTFE studied by ALD. Surfaces and Interfaces, 2017, 6, 223-228.	1.5	10
89	Hafnium oxide thin films as a barrier against copper diffusion in solar absorbers. Solar Energy Materials and Solar Cells, 2017, 166, 140-146.	3.0	10
90	Penning type magnetron sputtering source and its use in the production of carbon nitride coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 62-69.	0.9	9

#	Article	IF	CITATIONS
91	Nucleation and initial growth of atomic layer deposited titanium oxide determined by spectroscopic ellipsometry and the effect of pretreatment by surface barrier discharge. Applied Surface Science, 2015, 345, 216-222.	3.1	9
92	Atomic layer deposition of cerium oxide for potential use in diesel soot combustion. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	9
93	Plasma diagnostics in the growth of c-BN films. Diamond and Related Materials, 1994, 3, 551-554.	1.8	8
94	DLC films deposited by a neutral beam source: adhesion to biological implant metals. Surface and Coatings Technology, 2003, 169-170, 254-257.	2.2	8
95	Magnetic fields in magnetron sputtering systems. Surface and Coatings Technology, 1993, 57, 1-5.	2.2	7
96	The importance of the Pd to Sn ratio and of annealing cycles on the performance of Pd/Sn ohmiccontacts to n-GaAs. Thin Solid Films, 1997, 292, 264-269.	0.8	7
97	Temperature dependent optical properties of UV emitting γ-CuCl thin films. Thin Solid Films, 2008, 516, 1439-1442.	0.8	7
98	Optical properties of CuCl films on silicon substrates. Physica Status Solidi (B): Basic Research, 2008, 245, 2808-2814.	0.7	7
99	Effect of pulse frequency on the ion fluxes during pulsed dc magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 282-286.	0.9	7
100	Thermal stability of the non-alloyed Pd/Sn and Pd/Ge Ohmic contacts to n-GaAs. Thin Solid Films, 1997, 308-309, 607-610.	0.8	6
101	Influence of target to substrate distance on the sputtered CuCl film properties. Thin Solid Films, 2008, 516, 5531-5535.	0.8	6
102	(Invited) Molecular Layer Deposition. ECS Transactions, 2013, 58, 263-275.	0.3	6
103	Substrate effects on performance of InP MOSFETs. Electronics Letters, 1982, 18, 415.	0.5	5
104	Factors influencing the performance of InP metal/insulator/semiconductor field effect transistors. Thin Solid Films, 1983, 103, 61-70.	0.8	5
105	Effects of Au overlayers on the electrical and morphological characteristics of Pd/Sn ohmic contacts to n-GaAs. Thin Solid Films, 1996, 290-291, 417-421.	0.8	5
106	Properties of Pd/Sn Ohmic contacts on n-GaAs. Journal of Materials Processing Technology, 1998, 77, 42-49.	3.1	5
107	Characterisation of n-type Î ³ -CuCl on Si for UV optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2007, 18, 57-60.	1.1	5
108	Atomic layer deposition of nanocrystallite arrays of copper(I) chloride for optoelectronic structures. Journal of Materials Science: Materials in Electronics, 2017, 28, 11695-11701.	1.1	5

#	Article	IF	CITATIONS
109	Magnetic field in twoâ€dimensional magnetrons. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2151-2156.	0.9	4
110	Stoichiometry control of sputtered CuCl thin films: Influence on ultraviolet emission properties. Journal of Applied Physics, 2006, 100, 096108.	1.1	4
111	Electrical studies on sputtered CuCl thin films. Journal of Materials Science: Materials in Electronics, 2008, 19, 103-106.	1.1	4
112	Ion fluxes in medium frequency pulsed DC magnetron sputtering. Surface and Coatings Technology, 2010, 204, 3131-3134.	2.2	4
113	Enhancement of Atmospheric Plasma Decomposition of Toluene Using Porous Dielectric Conformally Coated with Titanium Dioxide by Atomic Layer Deposition. Science of Advanced Materials, 2014, 6, 2098-2105.	0.1	4
114	The correlation of channel mobility with interface state measurements on InP MOSFET structures. Solid-State Electronics, 1984, 27, 305-309.	0.8	3
115	Comparison of pd/sn and pd/sn/au thin-film Systems for Device Metallization. Materials Research Society Symposia Proceedings, 1996, 427, 583.	0.1	3
116	Comparison of the operating characteristics of an opposed target magnetron using ferromagnetic and non-ferromagnetic targets. Surface and Coatings Technology, 2005, 200, 644-648.	2.2	3
117	Morphological, optical and electrical properties of Î ³ CuCl deposited by vacuum evaporation. Journal of Materials Science: Materials in Electronics, 2008, 19, 99-101.	1.1	3
118	Controlled fabrication and electrowetting properties of silicon nanostructures. Journal of Adhesion Science and Technology, 2017, 31, 31-40.	1.4	3
119	Junction characteristics of Alâ€Al2O3 dS diodes fabricated by molecular beam epitaxy. Applied Physics Letters, 1979, 34, 413-415.	1.5	2
120	Characterization of Pd/Sn ohmic contacts on n-GaAs using electrical measurements, EDAX and SIMS. , 0, , .		2
121	Plasma deposition of hard carbon films as wear protective coatings. Journal of Materials Processing Technology, 1991, 26, 117-132.	3.1	1
122	Stress behaviour of reactively sputtered nitrogenated carbon films. Surface and Coatings Technology, 1998, 98, 985-990.	2.2	1
123	The use of wide-bandgap CuCl on silicon for ultra-violet photonics. , 2005, , .		1
124	Optical investigations on sputtered CuCl thin films. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	1
125	A three-step algorithm for solving 2D inverse magnetostatic problems for magnetron design applications. Inverse Problems in Science and Engineering, 2005, 13, 279-297.	1.2	1
126	Examination of Thin Film Uniformity at the Bottom of a Hole Structure Using a 3D Sputter Simulation Package. Journal De Physique III, 1996, 6, 1213-1218.	0.3	1

#	Article	IF	CITATIONS
127	The deposition of insulators on InP using plasma-enhanced chemical vapour deposition. Thin Solid Films, 1981, 80, 241.	0.8	0
128	Robust multivariable control of plasma etching of Si and SiO/sub 2/ in SF/sub 6//Argon. , 1994, , .		0
129	Magnetic Field in a Commercial Sputter Magnetron. Key Engineering Materials, 1996, 118-119, 287-294.	0.4	0
130	Luminescent characteristics of sol-gel produced zinc sulphide display structures. , 2003, , .		0
131	Structural and optoelectronic properties of sputtered copper (I) chloride. , 2005, , .		0
132	Electrowetting properties of atomic layer deposited Al2O3 decorated silicon nanowires. AIP Conference Proceedings, 2015, , .	0.3	0
133	Ellipsometry, reflectance, and photoluminescence of nanocrystalline CuCl thin films on silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	Ο