
Angelo Poletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6646128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Human Molecular Genetics, 2010, 19, 3440-3456.	1.4	303
4	Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15, 631-651.	4.3	256
5	Estrogens, Neuroinflammation, and Neurodegeneration. Endocrine Reviews, 2016, 37, 372-402.	8.9	254
6	A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism. Molecular Cell, 2016, 63, 796-810.	4.5	244
7	Mutation of SOD1 in ALS: a gain of a loss of function. Human Molecular Genetics, 2007, 16, 1604-1618.	1.4	166
8	The growing world of small heat shock proteins: from structure to functions. Cell Stress and Chaperones, 2017, 22, 601-611.	1.2	158
9	Dihydrotestosterone Decreases Tumor Necrosis Factor-α and Lipopolysaccharide-Induced Inflammatory Response in Human Endothelial Cells. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 546-554.	1.8	139
10	Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death and Differentiation, 2014, 21, 1838-1851.	5.0	132
11	BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta. Autophagy, 2014, 10, 1603-1621.	4.3	131
12	Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response. Progress in Neurobiology, 2012, 97, 101-126.	2.8	129
13	The Androgen Derivative 5α-Androstane-3β,17β-Diol Inhibits Prostate Cancer Cell Migration Through Activation of the Estrogen Receptor β Subtype. Cancer Research, 2005, 65, 5445-5453.	0.4	124
14	The 5α-reductase in the central nervous system: expression and modes of control. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 295-299.	1.2	118
15	The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocrine Reviews, 2020, 41, 273-319.	8.9	118
16	Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motoneuronal processes. FASEB Journal, 2002, 16, 1418-1420.	0.2	113
17	Steroid Metabolism in the Mammalian Brain: 5Alpha-Reduction and Aromatization. Brain Research Bulletin, 1997, 44, 365-375.	1.4	108
18	The role of the polyglutamine tract in androgen receptor. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 245-253.	1.2	105

#	Article	IF	CITATIONS
19	Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. Journal of Neurochemistry, 2005, 92, 10-20.	2.1	99
20	5α-Reductase Isozymes in the Central Nervous System. Steroids, 1998, 63, 246-251.	0.8	97
21	Transient Expression of the 5α-Reductase Type 2 Isozyme in the Rat Brain in Late Fetal and Early Postnatal Life ¹ . Endocrinology, 1998, 139, 2171-2178.	1.4	97
22	A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy, 2010, 6, 958-960.	4.3	97
23	Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy. Stem Cell Reports, 2018, 10, 375-389.	2.3	95
24	Pathological Proteins Are Transported by Extracellular Vesicles of Sporadic Amyotrophic Lateral Sclerosis Patients. Frontiers in Neuroscience, 2018, 12, 487.	1.4	95
25	FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathologica, 2019, 138, 67-84.	3.9	94
26	The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Frontiers in Neuroendocrinology, 2004, 25, 1-26.	2.5	93
27	Loss-of-function mutations in the <i>SIGMAR1</i> gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca ²⁺ signalling. Human Molecular Genetics, 2016, 25, 3741-3753.	1.4	85
28	Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. Journal of Neurochemistry, 2020, 154, 354-371.	2.1	83
29	Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death and Disease, 2018, 9, 889.	2.7	82
30	Phosphorylation of Human Progesterone Receptor by Cyclin-Dependent Kinase 2 on Three Sites That Are Authentic Basal Phosphorylation Sites <i>In Vivo</i> . Molecular Endocrinology, 1997, 11, 823-832.	3.7	81
31	Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Scientific Reports, 2016, 6, 22827.	1.6	78
32	The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Human Molecular Genetics, 2016, 25, 3908-3924.	1.4	72
33	5α-Reductase activity in isolated and cultured neuronal and glial cells of the rat. Brain Research, 1990, 516, 229-236.	1.1	71
34	Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110409.	1.8	71
35	Presence of 5α-Reductase isozymes and aromatase in human prostate cancer cells and in benign prostate hyperplastic tissue. , 1998, 34, 283-291.		69
36	The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress and Chaperones, 2018, 23, 1-12.	1.2	69

#	Article	IF	CITATIONS
37	Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. Human Molecular Genetics, 2009, 18, R40-R47.	1.4	67
38	Testosterone 5α-reductase activity in the rat brain is highly concentrated in white matter structures and in purified myelin sheaths of axons. The Journal of Steroid Biochemistry, 1988, 31, 173-179.	1.3	66
39	Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Progress in Neurobiology, 2012, 97, 83-100.	2.8	66
40	Differences in protein quality control correlate with phenotype variability in 2 mouse models of familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 492-504.	1.5	63
41	Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy, 2017, 13, 1280-1303.	4.3	62
42	Androgen 5-Alpha-Reductase Type 2 is Highly Expressed and Active in Rat Spinal Cord Motor Neurones. Journal of Neuroendocrinology, 2003, 15, 882-887.	1.2	58
43	Aggregation and proteasome: The case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy. Neurobiology of Aging, 2007, 28, 1099-1111.	1.5	58
44	Identification of type 1 5α-reductase in myelin membranes of male and female rat brain. Molecular and Cellular Endocrinology, 1997, 129, 181-190.	1.6	57
45	Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiology of Aging, 2013, 34, 2585-2603.	1.5	57
46	Luteinizing hormone-releasing hormone agonists interfere with the stimulatory actions of epidermal growth factor in human prostatic cancer cell lines, LNCaP and DU 145. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 3930-3937.	1.8	57
47	Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 2011, 118, 266-280.	2.1	55
48	17-AAG increases autophagic removal of mutant androgen receptor in spinal and bulbar muscular atrophy. Neurobiology of Disease, 2011, 41, 83-95.	2.1	55
49	Androgen receptor activation by polychlorinated biphenyls. Epigenetics, 2013, 8, 1061-1068.	1.3	55
50	The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 176.	1.4	54
51	Androgen-activating enzymes in the central nervous systemProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998 Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 117-122.	1.2	53
52	Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Frontiers in Cellular Neuroscience, 2013, 7, 234.	1.8	53
53	Androgen regulation of axon growth and neurite extension in motoneurons. Hormones and Behavior, 2008, 53, 716-728.	1.0	51
54	Androgen Regulates Neuritin mRNA Levels in an In Vivo Model of Steroid-Enhanced Peripheral Nerve Regeneration. Journal of Neurotrauma, 2008, 25, 561-566.	1.7	51

#	Article	IF	CITATIONS
55	Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells. Scientific Reports, 2018, 8, 12390.	1.6	50
56	Estrogen receptor β and the progression of prostate cancer: role of 5α-androstane-3β,17β-diol. Endocrine-Related Cancer, 2010, 17, 731-742.	1.6	49
57	Testosterone metabolism in brain cells and membranes. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 673-678.	1.2	48
58	Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy. Scientific Reports, 2015, 5, 15174.	1.6	47
59	Phosphorylation and progesterone receptor function. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 509-514.	1.2	46
60	Proteostasis and ALS: protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS). BMJ Open, 2019, 9, e028486.	0.8	44
61	Testosterone metabolism in peripheral nerves: Presence of the 5α-reductase-3α-hydroxysteroid-dehydrogenase enzymatic system in the sciatic nerve of adult and aged rats. The Journal of Steroid Biochemistry, 1990, 35, 145-148.	1.3	43
62	Expression of Androgenâ€Activating Enzymes in Cultured Cells of Developing Rat Brain. Journal of Neurochemistry, 1997, 68, 1298-1303.	2.1	43
63	5?-reductase isozymes and aromatase are differentially expressed and active in the androgen-independent human prostate cancer cell lines DU145 and PC3. , 1999, 41, 224-232.		42
64	Proteasomal and autophagic degradative activities in spinal and bulbar muscular atrophy. Neurobiology of Disease, 2010, 40, 361-369.	2.1	42
65	Synergic prodegradative activity of Bicalutamide and trehalose on the mutant androgen receptor responsible for spinal and bulbar muscular atrophy. Human Molecular Genetics, 2015, 24, 64-75.	1.4	42
66	The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget, 2017, 8, 10400-10415.	0.8	42
67	Lepidium meyenii (Maca) does not exert direct androgenic activities. Journal of Ethnopharmacology, 2006, 104, 415-417.	2.0	41
68	Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells. Pharmacological Research, 2014, 79, 13-20.	3.1	38
69	A presynaptically toxic secreted phospholipase A2 is internalized into motoneuron-like cells where it is rapidly translocated into the cytosol. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1129-1139.	1.9	37
70	The androgen derivative 5α-androstane-3β,17β-diol inhibits tumor necrosis factor α and lipopolysaccharide induced inflammatory response in human endothelial cells and in mice aorta. Atherosclerosis, 2010, 212, 100-106.	0.4	37
71	5α-Reductase Type 2 and Androgen Receptor Expression in Gonadotropin Releasing Hormone GT1-1 Cells. Journal of Neuroendocrinology, 2001, 13, 353-357.	1.2	34
72	Neuritin 1 promotes neuronal migration. Brain Structure and Function, 2014, 219, 105-118.	1.2	34

#	Article	IF	CITATIONS
73	Polyglutamine tract expansion of the androgen receptor in a motoneuronal model of spinal and bulbar muscular atrophy. Brain Research Bulletin, 2001, 56, 215-220.	1.4	33
74	Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. Journal of Neuroscience Research, 2007, 85, 2702-2713.	1.3	33
75	The Role of the Protein Quality Control System in SBMA. Journal of Molecular Neuroscience, 2016, 58, 348-364.	1.1	32
76	Concurrent <i>AFG3L2</i> and <i>SPG7</i> mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation. Human Mutation, 2018, 39, 2060-2071.	1.1	32
77	BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes. Scientific Reports, 2020, 10, 8755.	1.6	32
78	Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochemical Society Transactions, 2013, 41, 1598-1604.	1.6	31
79	Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis. Neurobiology of Aging, 2014, 35, 1929-1938.	1.5	31
80	Dysregulation of axonal transport and motorneuron diseases. Biology of the Cell, 2011, 103, 87-107.	0.7	29
81	The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis. Pharmacological Research, 2012, 65, 221-230.	3.1	29
82	Quantitative assessment of the degradation of aggregated TDPâ€43 mediated by the ubiquitin proteasome system and macroautophagy. FASEB Journal, 2017, 31, 5609-5624.	0.2	29
83	Nuclear Phospho-SOD1 Protects DNA from Oxidative Stress Damage in Amyotrophic Lateral Sclerosis. Journal of Clinical Medicine, 2019, 8, 729.	1.0	28
84	The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells, 2021, 10, 335.	1.8	28
85	ALS-related misfolded protein management in motor neurons and muscle cells. Neurochemistry International, 2014, 79, 70-78.	1.9	27
86	Functional interaction between FUS and SMN underlies SMA-like splicing changes in wild-type hFUS mice. Scientific Reports, 2017, 7, 2033.	1.6	27
87	Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2020, 21, 4291.	1.8	27
88	Reflections on the Diseases Linked to Mutations of the Androgen Receptor. Endocrine, 2005, 28, 243-262.	2.2	26
89	Chicken progesterone receptor expressed in Saccharomyces cerevisiae is correctly phosphorylated at all four Ser-Pro phosphorylation sites. Biochemistry, 1993, 32, 9563-9569.	1.2	25
90	Characterization of Prostate Cancer DU145 Cells Expressing the Recombinant Androgen Receptor. Oncology Research, 2003, 14, 101-112.	0.6	24

#	Article	IF	CITATIONS
91	Androgens inhibit androgen receptor promoter activation in motor neurons. Neurobiology of Disease, 2009, 33, 395-404.	2.1	23
92	Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy. Journal of Muscle Research and Cell Motility, 2016, 37, 101-115.	0.9	23
93	The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Frontiers in Neuroscience, 2019, 13, 796.	1.4	23
94	Characterization of rat 5α-reductases type 1 and type 2 expressed in Saccharomyces cerevisiae. Biochemical Journal, 1996, 314, 1047-1052.	1.7	22
95	Expression and role of functional glucocorticoid receptors in the human androgen-independent prostate cancer cell line, DU145. Journal of Molecular Endocrinology, 2001, 26, 185-191.	1.1	22
96	Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Frontiers in Endocrinology, 2019, 10, 569.	1.5	22
97	HSC70 expression is reduced in lymphomonocytes of sporadic ALS patients and contributes to TDP-43 accumulation. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 51-62.	1.1	22
98	Kinetic properties of the 5α-reductase of testosterone in the purified myelin, in the subcortical white matter and in the cerebral cortex of the male rat brain. The Journal of Steroid Biochemistry, 1990, 35, 97-101.	1.3	20
99	A novel, highly regulated, rapidly inducible system for the expression of chicken progesterone receptor, cPRA, in Saccharomyces cerevisiae. Gene, 1992, 114, 51-58.	1.0	20
100	The 5α-reductase activity of the subcortical white matter, the cerebral cortex, and the hypothalamus of the rat and of the mouse: Possible sex differences and effect of castration. Steroids, 1987, 49, 259-270.	0.8	17
101	Basic and clinical research on amyotrophic lateral sclerosis and other motor neuron disorders in Italy: recent findings and achievements from a network of laboratories. Neurological Sciences, 2004, 25, s41-s60.	0.9	16
102	210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscular Disorders, 2015, 25, 802-812.	0.3	16
103	A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Frontiers in Aging Neuroscience, 2020, 12, 191.	1.7	16
104	Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. International Journal of Molecular Sciences, 2022, 23, 1939.	1.8	16
105	Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients. Neurobiology of Aging, 2019, 82, 48-59.	1.5	15
106	Human Adipose-Derived Mesenchymal Stem Cells as a New Model of Spinal and Bulbar Muscular Atrophy. PLoS ONE, 2014, 9, e112746.	1.1	15
107	Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2021, 22, 5673.	1.8	14
108	C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation. EMBO Journal, 2022, 41, e105026.	3.5	13

#	Article	IF	CITATIONS
109	Effects and Metabolism of Steroid Hormones in Human Neuroblastoma Cells. Steroids, 1998, 63, 257-262.	0.8	12
110	Tetracycline-regulated gene expression in the NSC-34-tTA cell line for investigation of motor neuron diseases. Molecular Brain Research, 2005, 140, 63-72.	2.5	11
111	Multilayer and MATR3-dependent regulation of mRNAs maintains pluripotency in human induced pluripotent stem cells. IScience, 2021, 24, 102197.	1.9	11
112	Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins. Cells, 2022, 11, 516.	1.8	11
113	Androgen Metabolism in Different Target Tissues. Annals of the New York Academy of Sciences, 1990, 595, 184-198.	1.8	10
114	CAG repeat length in androgen receptor gene is not associated with amyotrophic lateral sclerosis. European Journal of Neurology, 2012, 19, 1373-1375.	1.7	9
115	Enhanced Clearance of Neurotoxic Misfolded Proteins by the Natural Compound Berberine and Its Derivatives. International Journal of Molecular Sciences, 2020, 21, 3443.	1.8	9
116	Combinatorial treatment for spinal muscular atrophy. Journal of Neurochemistry, 2020, 153, 146-149.	2.1	9
117	Effect of Postnatal Starvation on the 5α-Reductase Activity of the Brain and of the Isolated Myelin Membranes*. Experimental and Clinical Endocrinology and Diabetes, 1989, 94, 253-261.	0.6	8
118	Effect of suramin on the biological activity of the two isoforms of the rat 5α-reductase. Steroids, 1996, 61, 504.	0.8	7
119	Lysosomes Dysfunction Causes Mitophagy Impairment in PBMCs of Sporadic ALS Patients. Cells, 2022, 11, 1272.	1.8	7
120	Long-term presence of androgens and anti-androgens modulate EGF-receptor expression and MAP-kinase phosphorylation in androgen receptor-prostate positive cancer cells. International Journal of Oncology, 2004, 25, 97.	1.4	6
121	Aspects of Hormonal Steroid Metabolism in the Nervous System. , 1999, , 97-123.		6
122	RNA Molecular Signature Profiling in PBMCs of Sporadic ALS Patients: HSP70 Overexpression Is Associated with Nuclear SOD1. Cells, 2022, 11, 293.	1.8	5
123	Pathogenic variants of Valosinâ€containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathology and Applied Neurobiology, 2022, 48, e12818.	1.8	5
124	Synthesis of a chemiluminescent probe useful for the purification of steroid 5α-reductase. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1997-2002.	1.0	4
125	Foreword. Progress in Neurobiology, 2012, 97, 53.	2.8	4
126	EDITORIAL: SEARCHING FOR THE IDEAL SERM. Pharmacological Research, 1999, 39, 333.	3.1	3

#	Article	IF	CITATIONS
127	Retinoic Acid Downregulates HSPB8 Gene Expression in Human Breast Cancer Cells MCF-7. Frontiers in Oncology, 2021, 11, 652085.	1.3	3
128	5α-reductase isozymes and aromatase are differentially expressed and active in the androgen-independent human prostate cancer cell lines DU145 and PC3. , 1999, 41, 224.		2
129	Phosphorylation and Progesterone Receptor Function. , 1994, , 309-332.		1
130	Estrogen receptor beta and the progression of prostate cancer – role of 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). European Journal of Cancer, Supplement, 2008, 6, 80.	2.2	0
131	Motoneuronal and muscle-selective removal of ALS-related misfolded proteins. Biochemical Society Transactions, 2014, 42, 605-605.	1.6	0
132	The role of dynein mediated transport in the clearance of misfolded proteins responsible for motoneuron diseases. SpringerPlus, 2015, 4, L24.	1.2	0
133	The protein quality control system in motoneuron diseases. SpringerPlus, 2015, 4, L55.	1.2	0
134	Alteration of the protein quality control system in motor neuron and muscle expressing mutant proteins causing ALS and SBMA. SpringerPlus, 2015, 4, .	1.2	0
135	Role of HSPB8 in the Proteostasis Network: From Protein Synthesis to Protein Degradation and Beyond. Heat Shock Proteins, 2015, , 487-510.	0.2	0
136	THE PHYSIOPATHOLOGICAL ROLES OF ANDROGENS IN MOTONEURONS. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0, , .	0.0	0
137	Dysregulation of myomiRs as common pathogenic feature associated with muscle atrophy in ALS, SMA and SBMA: Evidence from animal models and human patients. Journal of the Neurological Sciences, 2021, 429, 117741.	0.3	0
138	Steroid Metabolism in the Brain. , 1999, , .		0
139	MATR3-Dependent Multilayer Regulation of OCT4, NANOG and LIN28A is Essential for the Maintenance of the Human Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0