
Bart W Hoogenboom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6645836/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies. ELife, 2022, 11, .	2.8	10
2	In-situ nanoscale imaging reveals self-concentrating nanomolar antimicrobial pores. Nanoscale, 2022, , .	2.8	0
3	Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase. EMBO Journal, 2022, 41, .	3.5	14
4	Lipid specificity of the immune effector perforin. Faraday Discussions, 2021, 232, 236-255.	1.6	7
5	Atomic force microscopy to elucidate how peptides disrupt membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183447.	1.4	36
6	AFM imaging of pore forming proteins. Methods in Enzymology, 2021, 649, 149-188.	0.4	3
7	Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nature Communications, 2021, 12, 1053.	5.8	73
8	Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation. ACS Nano, 2021, 15, 9679-9689.	7.3	17
9	Physical modeling of multivalent interactions in the nuclear pore complex. Biophysical Journal, 2021, 120, 1565-1577.	0.2	14
10	Stretching the resolution limit of atomic force microscopy. Nature Structural and Molecular Biology, 2021, 28, 629-630.	3.6	8
11	Physics of the nuclear pore complex: Theory, modeling and experiment. Physics Reports, 2021, 921, 1-53.	10.3	44
12	Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Science Advances, 2021, 7, .	4.7	23
13	TopoStats – A program for automated tracing of biomolecules from AFM images. Methods, 2021, 193, 68-79.	1.9	23
14	Imaging the Effects of Peptide Materials on Phospholipid Membranes by Atomic Force Microscopy. Methods in Molecular Biology, 2021, 2208, 225-235.	0.4	3
15	Phase separation in the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
16	Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS Nano, 2020, 14, 1609-1622.	7.3	42
17	Flowering Poration—A Synergistic Multi-Mode Antibacterial Mechanism by a Bacteriocin Fold. IScience, 2020, 23, 101423.	1.9	16
18	Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nature Communications, 2020, 11, 5818.	5.8	13

Bart W Hoogenboom

#	Article	IF	CITATIONS
19	Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathogens, 2020, 16, e1008606.	2.1	28
20	Intrinsically disordered nuclear pore proteins show ideal-polymer morphologies and dynamics. Physical Review E, 2020, 101, 022420.	0.8	18
21	Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 2020, 92, 4082-4093.	3.2	55
22	Membrane disrupting peptides: mechanistic elucidation of antimicrobial activity. Amino Acids, Peptides and Proteins, 2020, , 115-139.	0.7	0
23	Title is missing!. , 2020, 16, e1008606.		0
24	Title is missing!. , 2020, 16, e1008606.		0
25	Title is missing!. , 2020, 16, e1008606.		0
26	The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nature Communications, 2019, 10, 4288.	5.8	65
27	Quantification of Biomolecular Dynamics Inside Real and Synthetic Nuclear Pore Complexes Using Time-Resolved Atomic Force Microscopy. ACS Nano, 2019, 13, 7949-7956.	7.3	14
28	Helminth Defense Molecules as Design Templates for Membrane Active Antibiotics. ACS Infectious Diseases, 2019, 5, 1471-1479.	1.8	11
29	Single-molecule kinetics of pore assembly by the membrane attack complex. Nature Communications, 2019, 10, 2066.	5.8	74
30	Lipid order and charge protect killer T cells from accidental death. Nature Communications, 2019, 10, 5396.	5.8	56
31	Imaging live bacteria at the nanoscale: comparison of immobilisation strategies. Analyst, The, 2019, 144, 6944-6952.	1.7	21
32	PEGylated surfaces for the study of DNA–protein interactions by atomic force microscopy. Nanoscale, 2019, 11, 20072-20080.	2.8	15
33	Bacterial killing by complement requires membrane attack complex formation via surfaceâ€bound C5 convertases. EMBO Journal, 2019, 38, .	3.5	76
34	A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. ACS Nano, 2018, 12, 1508-1518.	7.3	84
35	The case for biophysics super-groups in physics departments. Physical Biology, 2018, 15, 060201.	0.8	2
36	Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms. Scientific Reports, 2018, 8, 14926.	1.6	24

Bart W Hoogenboom

#	Article	IF	CITATIONS
37	Atomic force microscopy reveals structural variability amongst nuclear pore complexes. Life Science Alliance, 2018, 1, e201800142.	1.3	28
38	Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 2017, 12, 467-473.	15.6	88
39	Biomechanics of the transport barrier in the nuclear pore complex. Seminars in Cell and Developmental Biology, 2017, 68, 42-51.	2.3	37
40	Engineering monolayer poration for rapid exfoliation of microbial membranes. Chemical Science, 2017, 8, 1105-1115.	3.7	35
41	Antimicrobial peptide capsids of de novo design. Nature Communications, 2017, 8, 2263.	5.8	63
42	The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. Journal of Cell Science, 2016, 129, 2125-33.	1.2	45
43	Studies of G-quadruplexes formed within self-assembled DNA mini-circles. Chemical Communications, 2016, 52, 12454-12457.	2.2	15
44	Atomic force microscopy of membrane pore formation by cholesterol dependent cytolysins. Current Opinion in Structural Biology, 2016, 39, 8-15.	2.6	17
45	Imaging DNA Structure by Atomic Force Microscopy. Methods in Molecular Biology, 2016, 1431, 47-60.	0.4	14
46	Structurally plastic peptide capsules for synthetic antimicrobial viruses. Chemical Science, 2016, 7, 1707-1711.	3.7	43
47	A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. ELife, 2016, 5, .	2.8	69
48	Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature. PLoS ONE, 2015, 10, e0132696.	1.1	2
49	Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes. Nature Nanotechnology, 2015, 10, 60-64.	15.6	57
50	AFM in Liquids. , 2015, , 1-9.		0
51	Atomic force microscopy on plasma membranes from <i>Xenopus laevis</i> oocytes containing human aquaporin 4. Journal of Molecular Recognition, 2014, 27, 669-675.	1.1	1
52	Singleâ€Molecule Reconstruction of Oligonucleotide Secondary Structure by Atomic Force Microscopy. Small, 2014, 10, 3257-3261.	5.2	96
53	Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. ELife, 2014, 3, e04247.	2.8	145
54	Physical modelling of the nuclear pore complex. Soft Matter, 2013, 9, 10442.	1.2	28

#	Article	IF	CITATIONS
55	Model Inspired by Nuclear Pore Complex Suggests Possible Roles for Nuclear Transport Receptors in Determining Its Structure. Biophysical Journal, 2013, 105, 2781-2789.	0.2	29
56	Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8918-8923.	3.3	112
57	Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages. Sensors, 2012, 12, 6497-6507.	2.1	13
58	Bistable collective behavior of polymers tethered in a nanopore. Physical Review E, 2012, 85, 061917.	0.8	35
59	Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid. Journal of Applied Physics, 2012, 112, .	1.1	12
60	Resolving the structure of a model hydrophobic surface: DODAB monolayers on mica. RSC Advances, 2012, 2, 4181.	1.7	10
61	Atomic Force Microscopy with Nanoscale Cantilevers Resolves Different Structural Conformations of the DNA Double Helix. Nano Letters, 2012, 12, 3846-3850.	4.5	83
62	Improved Kelvin probe force microscopy for imaging individual DNA molecules on insulating surfaces. Applied Physics Letters, 2010, 97, .	1.5	36
63	Imaging the Essential Role of Spin Fluctuations in High- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub>Supercondu Physical Review Letters. 2009. 103. 227001.</mml:math 	ctivity.	40
64	Imaging Surface Charges of Individual Biomolecules. Nano Letters, 2009, 9, 2769-2773.	4.5	85
65	The Supramolecular Assemblies of Voltage-dependent Anion Channels in the Native Membrane. Journal of Molecular Biology, 2007, 370, 246-255.	2.0	157
66	Quantitative dynamic-mode scanning force microscopy in liquid. Applied Physics Letters, 2006, 88, 193109.	1.5	88
67	Field Dependent Coherence Length in the Superclean, High-κSuperconductorCeCoIn5. Physical Review Letters, 2006, 97, 127001.	2.9	37
68	Hexagonal and Square Flux Line Lattices inCeCoIn5. Physical Review Letters, 2003, 90, 187001.	2.9	53
69	Linear and Field-Independent Relation between Vortex Core State Energy and Gap inBi2Sr2CaCu2O8+δ. Physical Review Letters, 2001, 87, 267001.	2.9	42
70	Charge transfer and doping-dependent hybridization ofC60on noble metals. Physical Review B, 1998, 57, 11939-11942.	1.1	104