Kuanglin Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6645762/publications.pdf

Version: 2024-02-01

44 papers 2,105 citations

236925 25 h-index 276875 41 g-index

44 all docs

44 docs citations

44 times ranked 2766 citing authors

#	Article	IF	CITATIONS
1	Identification and Evaluation of Composition in Food Powder Using Point-Scan Raman Spectral Imaging. Applied Sciences (Switzerland), $2017, 7, 1$.	2.5	559
2	Assessment of Polysaccharides from Mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy. Scientific Reports, 2018, 8, 10.	3.3	139
3	Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Food Chemistry, 2013, 138, 998-1007.	8.2	107
4	Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods, 2016, 5, 36.	4.3	93
5	Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model. Talanta, 2016, 151, 183-191.	5.5	92
6	Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 168-177.	1.5	91
7	Prototype instrument development for non-destructive detection of pesticide residue in apple surface using Raman technology. Journal of Food Engineering, 2014, 123, 94-103.	5.2	63
8	Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications. Applied Sciences (Switzerland), 2017, 7, 125.	2.5	63
9	Surface-Enhanced Raman Spectroscopy for Trace Detection of Tetracycline and Dicyandiamide in Milk Using Transparent Substrate of Ag Nanoparticle Arrays. ACS Applied Nano Materials, 2020, 3, 7066-7075.	5.0	52
10	Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging. Biosystems Engineering, 2017, 159, 10-21.	4.3	51
11	A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Sensors, 2018, 18, 424.	3.8	49
12	Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 41-48.	1.5	44
13	Line-Scan Macro-scale Raman Chemical Imaging for Authentication of Powdered Foods and Ingredients. Food and Bioprocess Technology, 2016, 9, 113-123.	4.7	39
14	Raman spectral imaging for quantitative contaminant evaluation in skim milk powder. Journal of Food Measurement and Characterization, 2016, 10, 374-386.	3.2	35
15	Effects of the Adulteration Technique on the Near-Infrared Detection of Melamine in Milk Powder. Journal of Agricultural and Food Chemistry, 2017, 65, 5799-5809.	5.2	35
16	A lineâ€scan hyperspectral Raman system for spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 437-443.	2.5	34
17	Detection of Additives and Chemical Contaminants in Turmeric Powder Using FT-IR Spectroscopy. Foods, 2019, 8, 143.	4.3	34
18	A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@Au core/shell nanoparticles. Talanta, 2020, 207, 120324.	5.5	34

#	Article	IF	CITATIONS
19	Extraction and identification of mixed pesticides' Raman signal and establishment of their prediction models. Journal of Raman Spectroscopy, 2017, 48, 494-500.	2.5	33
20	Machine vision system for online inspection of freshly slaughtered chickens. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 70-80.	1.5	32
21	Development of a Raman chemical imaging detection method for authenticating skim milk powder. Journal of Food Measurement and Characterization, 2014, 8, 122-131.	3.2	31
22	Multispectral line-scan imaging system for simultaneous fluorescence and reflectance measurements of apples: multitask apple inspection system. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 123-129.	1.5	30
23	Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 152-161.	2.3	30
24	Raman and IR spectroscopic modality for authentication of turmeric powder. Food Chemistry, 2020, 320, 126567.	8.2	30
25	Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System. Sensors, 2014, 14, 18837-18850.	3.8	29
26	Fabrication of a Novel Transparent SERS Substrate Comprised of Ag-nanoparticle Arrays and its Application in Rapid Detection of Ractopamine on Meat. Food Analytical Methods, 2018, 11, 2329-2335.	2.6	28
27	Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder. Sensors, 2016, 16, 441.	3.8	25
28	Quantitative Detection of Benzoyl Peroxide in Wheat Flour Using Line-Scan Macroscale Raman Chemical Imaging. Applied Spectroscopy, 2017, 71, 2469-2476.	2.2	23
29	Visible to SWIR hyperspectral imaging for produce safety and quality evaluation. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 155-164.	1.5	22
30	Development of multispectral imaging algorithm for detection of frass on mature red tomatoes. Postharvest Biology and Technology, 2014, 93, 1-8.	6.0	21
31	A 1064 nm Dispersive Raman Spectral Imaging System for Food Safety and Quality Evaluation. Applied Sciences (Switzerland), 2018, 8, 431.	2.5	21
32	Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System. Applied Sciences (Switzerland), 2018, 8, 564.	2.5	21
33	Feasibility of colloidal silver SERS for rapid bacterial screening. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 100-107.	1.5	20
34	A feasibility study of rapid nondestructive detection of total volatile basic nitrogen (TVB-N) content in beef based on airflow and laser ranging technique. Meat Science, 2018, 145, 367-374.	5.5	20
35	The development of a simple multispectral algorithm for detection of fecal contamination on apples using a hyperspectral line-scan imaging system. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 10-18.	1.5	18
36	A Line-Scan Hyperspectral System for High-Throughput Raman Chemical Imaging. Applied Spectroscopy, 2014, 68, 692-695.	2.2	18

3

#	Article	IF	CITATIONS
37	A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders. Sensors, 2017, 17, 618.	3.8	18
38	Prediction of infertile chicken eggs before hatching by the Na \tilde{A} -ve-Bayes method combined with visible near infrared transmission spectroscopy. Spectroscopy Letters, 2020, 53, 327-336.	1.0	10
39	A Nondestructive Detection Method for Mixed Veterinary Drugs in Pork Using Line-Scan Raman Chemical Imaging Technology. Food Analytical Methods, 2019, 12, 658-667.	2.6	7
40	Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy., 2015,,.		2
41	Food process automation. Sensing and Instrumentation for Food Quality and Safety, 2009, 3, 1-2.	1.5	1
42	A rapid and precise spectroscopic method for detecting fipronil insecticide on solid surfaces. Journal of Food Measurement and Characterization, 2022, 16, 2710-2717.	3.2	1
43	DETECTION OF FECAL RESIDUE ON POULTRY CARCASSES BY LASER INDUCED FLUORESCENCE IMAGING. , 2008, , .		O
44	LINE-SCAN SPECTRAL IMAGING SYSTEM FOR ONLINE POULTRY CARCASS INSPECTION. , 2008, , .		0