
John Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664566/publications.pdf Version: 2024-02-01

Іони Нимт

#	Article	IF	CITATIONS
	Discovery of <i>N</i> -(2-Chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)-) Tj ETQq1 1 0.784314 rgBT /Overloc		
1	Inhibitor with Potent Antitumor Activity in Preclinical Assays. Journal of Medicinal Chemistry, 2004, 47. 6658-6661.	6.4	1,196
2	Discovery of <i>N</i> -(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyrid (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily. Journal of Medicinal Chemistry, 2009, 52, 1251-1254.	dine-3-carl 6.4	boxamide 265
3	N-(Cycloalkylamino)acyl-2-aminothiazole Inhibitors of Cyclin-Dependent Kinase 2. N-[5-[[[5-(1,1-Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a Highly Efficacious and Selective Antitumor Agent. Journal of Medicinal Chemistry, 2004, 47, 1719-1728.	6.4	253
4	Venous smooth muscle contains vasoconstrictor ETB-like receptors. Biochemical and Biophysical Research Communications, 1992, 184, 100-106.	2.1	250
5	Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2:Â Synthesis, X-ray Crystallographic Analysis, and Biological Activities. Journal of Medicinal Chemistry, 2002, 45, 3905-3927.	6.4	163
6	Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3249-3254.	7.1	157
7	The Discovery of Sulfonamide Endothelin Antagonists and the Development of the Orally Active ETA Antagonist 5-(Dimethylamino)-N-(3,4-dimethyl-5- isoxazolyl)-1-naphthalenesulfonamide. Journal of Medicinal Chemistry, 1994, 37, 329-331.	6.4	147
8	Discovery and Preclinical Studies of (R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-) Tj ETQq0 0 0 rgBT /Overlocl Inhibitor. Journal of Medicinal Chemistry, 2006, 49, 2143-2146.	२ 10 Tf 50 6.4	467 Td (meth) 136
9	Discovery of (R)-7-Cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3- (phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a Farnesyltransferase Inhibitor with Potent Preclinical Antitumor Activity. Journal of Medicinal Chemistry, 2000, 43, 3587-3595.	6.4	135
10	Discovery of Brivanib Alaninate ((<i>S</i>)-((<i>R</i>)-1-(4-(4-Fluoro-2-methyl-1 <i>H</i> -indol-5-yloxy)-5-methylpyrrolo[2,1- <i>f</i>][1,2,4]triaz A Novel Prodrug of Dual Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Kinase Inhibitor (BMS-540215). Journal of Medicinal Chemistry, 2008, 51, 1976-1980.	zin-6-yloxy 6:4)propan-2-yl)2· 135
11	Discovery of Pyrrolopyridineâ^'Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities. Journal of Medicinal Chemistry, 2008, 51, 5330-5341.	6.4	115
12	Thio- and Oxoflavopiridols, Cyclin-Dependent Kinase 1-Selective Inhibitors:  Synthesis and Biological Effects. Journal of Medicinal Chemistry, 2000, 43, 4126-4134.	6.4	106
13	Discovery of Ixabepilone. Molecular Cancer Therapeutics, 2009, 8, 275-281.	4.1	93
14	Potent, Cell Active, Non-Thiol Tetrapeptide Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry, 1996, 39, 353-358.	6.4	92
15	Discovery of the Pyrrolo[2,1-f][1,2,4]triazine Nucleus as a New Kinase Inhibitor Template. Journal of Medicinal Chemistry, 2004, 47, 4054-4059.	6.4	92
16	Development of Highly Potent Inhibitors of Ras Farnesyltransferase Possessing Cellular andin VivoActivity. Journal of Medicinal Chemistry, 1996, 39, 224-236.	6.4	82
17	Preclinical Antitumor Activity of BMS-599626, a pan-HER Kinase Inhibitor That Inhibits HER1/HER2 Homodimer and Heterodimer Signaling. Clinical Cancer Research, 2006, 12, 6186-6193.	7.0	79
18	Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors. ACS Medicinal Chemistry Letters, 2015, 6, 523-527.	2.8	79

Јони Ниит

#	Article	IF	CITATIONS
19	Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunology, Immunotherapy, 2013, 62, 1533-1545.	4.2	78
20	The Antiangiogenic Activity in Xenograft Models of Brivanib, a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Kinases. Molecular Cancer Therapeutics, 2010, 9, 369-378.	4.1	72
21	Design, Synthesis, and Evaluation of Orally Active 4-(2,4-Difluoro-5-(methoxycarbamoyl)phenylamino)pyrrolo[2,1-f][1,2,4]triazines as Dual Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 3991-4008.	6.4	65
22	Discovery of orally active pyrrolopyridine- and aminopyridine-based Met kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3224-3229.	2.2	62
23	Identification of pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of Met kinase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1945-1951.	2.2	56
24	Benzazepinone calcium channel blockers. 4. Structure-activity overview and intracellular binding site. Journal of Medicinal Chemistry, 1992, 35, 780-793.	6.4	48
25	Discovery and Structureâ^'Activity Relationships of Imidazole-Containing Tetrahydrobenzodiazepine Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry, 1999, 42, 5241-5253.	6.4	47
26	Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isoindole-1,3(2H)-dione nucleus. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 389-393.	2.2	47
27	Multiple pathways of thrombin-induced platelet activation differentiated by desensitization and a thrombin exosite inhibitor. Biochemical and Biophysical Research Communications, 1991, 181, 636-643.	2.1	41
28	New dual inhibitors of EGFR and HER2 protein tyrosine kinases. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4774-4779.	2.2	41
29	Discovery and Evaluation ofN-Cyclopropyl- 2,4-difluoro-5-((2-(pyridin-2-ylamino)thiazol-5-) Tj ETQq1 1 0.784314 r Endothelial Growth Factor Receptor-2. Journal of Medicinal Chemistry, 2006, 49, 3766-3769.	gBT /Over 6.4	rlock 10 Tf 5 40
30	Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor. , 2021, 9, e001402.		40
31	Solution conformation of a cyclic pentapeptide endothelin antagonist Comparison of structures obtained from constrained dynamics and conformational search. FEBS Letters, 1992, 299, 255-261.	2.8	39
32	Synthesis and SAR of 4-(3-hydroxyphenylamino)pyrrolo[2,1-f][1,2,4]triazine based VEGFR-2 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1429-1433.	2.2	39
33	Biphenylsulfonamide Endothelin Antagonists:Â Structureâ^ Activity Relationships of a Series of Mono- and Disubstituted Analogues and Pharmacology of the Orally Active Endothelin Antagonist 2†Amino-N- (3,4-dimethyl-5-isoxazolyl)-4†(2-methylpropyl)[1,1†biphenyl]-2-sulfonamide (BMS-187308). Iournal of Medicinal Chemistry, 1998, 41, 5198-5218.	6.4	37
34	Three-Dimensional Quantitative Structure-Activity Relationships of Sulfonamide Endothelin Inhibitors. Journal of Medicinal Chemistry, 1995, 38, 659-668.	6.4	34
35	The synthesis and evaluation of [2.2.1]-bicycloazahydantoins as androgen receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 6107-6111.	2.2	33
36	Preclinical Characterization of Linrodostat Mesylate, a Novel, Potent, and Selective Oral Indoleamine 2,3-Dioxygenase 1 Inhibitor. Molecular Cancer Therapeutics, 2021, 20, 467-476.	4.1	33

Јони Ниит

#	Article	IF	CITATIONS
37	Structure-activity relationships of monocyclic endothelin analogs. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 33-38.	2.2	32
38	3-Imidazolylmethylaminophenylsulfonyltetrahydroquinolines, a novel series of farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 273-275.	2.2	32
39	Solid phase synthesis of phosphinic acid endothelin converting enzyme inhibitors. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1323-1326.	2.2	30
40	Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLoS ONE, 2019, 14, e0212670.	2.5	28
41	Synthesis, SAR, and Evaluation of 4-[2,4-Difluoro-5-(cyclopropylcarbamoyl)phenylamino]pyrrolo[2,1-f][1,2,4]triazine-based VEGFR-2 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1354-1358.	2.2	27
42	Antitumor and Antiangiogenic Activities of BMS-690514, an Inhibitor of Human EGF and VEGF Receptor Kinase Families. Clinical Cancer Research, 2011, 17, 4031-4041.	7.0	23
43	Identification and optimization of a novel series of indoleamine 2,3-dioxygenase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 582-585.	2.2	22
44	Design, synthesis, and structure–activity relationships of tetrahydroquinoline-based farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1895-1899.	2.2	21
45	Apoptotic and Cytostatic Farnesyltransferase Inhibitors Have Distinct Pharmacology and Efficacy Profiles in Tumor Models. Cancer Research, 2004, 64, 3974-3980.	0.9	20
46	1-benzazepin-2-one calcium channel blockers—VI. Receptor-binding model and possible relationship to desmethoxyverapamil Bioorganic and Medicinal Chemistry, 1993, 1, 285-307.	3.0	19
47	Discovery and preclinical studies of 5-isopropyl-6-(5-methyl-1,3,4-oxadiazol-2-yl)-N-(2-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin- (BMS-645737), an in vivo active potent VEGFR-2 inhibitor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2985-2989.	4-amine 2.2	18
48	Control of peptide disulfide regioisomer formation by mixed cysteine-penicillamine bridges. International Journal of Peptide and Protein Research, 2009, 42, 249-258.	0.1	18
49	Development of a series of novel o-phenylenediamine-based indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 732-736.	2.2	15
50	Discovery and Preclinical Evaluation of BMS-986242, a Potent, Selective Inhibitor of Indoleamine-2,3-dioxygenase 1. ACS Medicinal Chemistry Letters, 2021, 12, 288-294.	2.8	15
51	BMS-871: A novel orally active pan-Notch inhibitor as an anticancer agent. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1905-1909.	2.2	11
52	Discovery of Imidazopyridines as Potent Inhibitors of Indoleamine 2,3-Dioxygenase 1 for Cancer Immunotherapy. ACS Medicinal Chemistry Letters, 2021, 12, 494-501.	2.8	10
53	Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides. Biochemical Journal, 1989, 257, 73-78.	3.7	9
54	The receptor binding affinity of monocyclic [Ala3, Xaa11]endothelin-1 analogs correlates with inducible helix length. Bioorganic and Medicinal Chemistry, 1995, 3, 113-124.	3.0	6

Јони Ниит

#	Article	IF	CITATIONS
55	Design and synthesis of nonpeptidal endothelin receptor antagonists based on the structure of a cyclic pentapeptide. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 253-258.	2.2	6
56	Design, synthesis, functional and structural characterization of an inhibitor of N-acetylneuraminate-9-phosphate phosphatase: Observation of extensive dynamics in an enzyme/inhibitor complex. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4107-4111.	2.2	6
57	Pharmacology of smac mimetics; chemotype differentiation based on physical association with caspase regulators and cellular transport. Experimental Cell Research, 2015, 338, 251-260.	2.6	6
58	Hydroxyamino acid specificity of smooth muscle myosin light chain kinase. Archives of Biochemistry and Biophysics, 1988, 260, 37-44.	3.0	5
59	Endothelin analogs which distinguish vasoconstrictor and vasodilator ETB receptors. Life Sciences, 1995, 56, 1251-1256.	4.3	5
60	Structure-activity studies of endothelin leading to novel peptide ETA antagonists. Bioorganic and Medicinal Chemistry, 1993, 1, 59-65.	3.0	4
61	Siteâ€specific biotinylation. International Journal of Peptide and Protein Research, 1992, 40, 567-574.	0.1	4
62	Conformational-Analysis-Guided Discovery of 2,3-Disubstituted Pyridine IDO1 Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1143-1150.	2.8	3
63	Substrate based inhibitors of smooth muscle myosin light chain kinase. Biochemical and Biophysical Research Communications, 1992, 185, 379-385.	2.1	2
64	Peptide analogs of the pseudosubstrate domain of smooth muscle myosin light chain kinase inhibit actomyosin ATPase activity at concentrations that do not inhibit superprecipitation. Biochemical and Biophysical Research Communications, 1992, 187, 1279-1284.	2.1	2
65	Farnesyltransferase Inhibitors: From Squalene Synthase Inhibitors to the Clinical Agent BMS-214662.	0.5	Ο