David H Richter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/664555/publications.pdf Version: 2024-02-01

DAVID H RICHTER

#	Article	IF	CITATIONS
1	The Individualistic Dynamics of Entangled DNA in Solution. Macromolecules, 2007, 40, 2461-2476.	2.2	99
2	Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers. Journal of Fluid Mechanics, 2010, 651, 415-442.	1.4	80
3	Modification of near-wall coherent structures by inertial particles. Physics of Fluids, 2014, 26, .	1.6	52
4	Momentum transfer in a turbulent, particle-laden Couette flow. Physics of Fluids, 2013, 25, .	1.6	50
5	Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. Journal of Fluid Mechanics, 2019, 868, 538-559.	1.4	46
6	The effect of pre-shear on the extensional rheology of wormlike micelle solutions. Rheologica Acta, 2007, 46, 861-875.	1.1	45
7	Evidence of sprayâ€mediated airâ€sea enthalpy flux within tropical cyclones. Geophysical Research Letters, 2014, 41, 2997-3003.	1.5	41
8	An Assessment of the Flux Profile Method for Determining Air–Sea Momentum and Enthalpy Fluxes from Dropsonde Data in Tropical Cyclones. Journals of the Atmospheric Sciences, 2016, 73, 2665-2682.	0.6	40
9	Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Physics of Fluids, 2015, 27, .	1.6	39
10	Inertial particle velocity and distribution in vertical turbulent channel flow: A numerical and experimental comparison. International Journal of Multiphase Flow, 2019, 120, 103105.	1.6	38
11	C-FOG: Life of Coastal Fog. Bulletin of the American Meteorological Society, 2021, 102, E244-E272.	1.7	37
12	Sea surface drag and the role of spray. Geophysical Research Letters, 2013, 40, 656-660.	1.5	34
13	Ocean spray: An outsized influence on weather and climate. Physics Today, 2016, 69, 34-39.	0.3	26
14	Turbulent latent and sensible heat flux in the presence of evaporative droplets. International Journal of Multiphase Flow, 2016, 78, 1-11.	1.6	25
15	Rayleigh-Bénard turbulence modified by two-way coupled inertial, nonisothermal particles. Physical Review Fluids, 2018, 3, .	1.0	25
16	Effects of viscoelasticity in the high Reynolds number cylinder wake. Journal of Fluid Mechanics, 2012, 693, 297-318.	1.4	23
17	Inertial Effects on the Vertical Transport of Suspended Particles in a Turbulent Boundary Layer. Boundary-Layer Meteorology, 2018, 167, 235-256.	1.2	22
18	Floquet stability analysis of viscoelastic flow over a cylinder. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 554-565.	1.0	21

DAVID H RICHTER

#	Article	IF	CITATIONS
19	Characterization of bedload intermittency near the threshold of motion using a Lagrangian sediment transport model. Environmental Fluid Mechanics, 2017, 17, 111-137.	0.7	21
20	Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media. Physical Review Fluids, 2017, 2, .	1.0	21
21	The Sea Spray Contribution to Sensible Heat Flux. Journals of the Atmospheric Sciences, 2014, 71, 640-654.	0.6	20
22	Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow. Journal of Fluid Mechanics, 2019, 861, 901-929.	1.4	20
23	GPU acceleration of Eulerian–Lagrangian particle-laden turbulent flow simulations. International Journal of Multiphase Flow, 2018, 99, 437-445.	1.6	17
24	A Dual Domain stochastic lagrangian model for predicting transport in open channels with hyporheic exchange. Advances in Water Resources, 2019, 125, 57-67.	1.7	17
25	Sea Spray and Its Feedback Effects: Assessing Bulk Algorithms of Air–Sea Heat Fluxes via Direct Numerical Simulations. Journal of Physical Oceanography, 2019, 49, 1403-1421.	0.7	17
26	Influence of Evaporating Droplets in the Turbulent Marine Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2017, 165, 497-518.	1.2	16
27	Turbulent Transport of Spray Droplets in the Vicinity of Moving Surface Waves. Journal of Physical Oceanography, 2019, 49, 1789-1807.	0.7	16
28	Mechanisms governing the settling velocities and spatial distributions of inertial particles in wall-bounded turbulence. Physical Review Fluids, 2021, 6, .	1.0	15
29	Upscaling Mixing in Highly Heterogeneous Porous Media via a Spatial Markov Model. Water (Switzerland), 2019, 11, 53.	1.2	14
30	Direct numerical simulation of turbulence and microphysics in the Pi Chamber. Physical Review Fluids, 2022, 7, .	1.0	11
31	Effect of computational domain size on inertial particle one-point statistics in open channel flow. International Journal of Multiphase Flow, 2020, 125, 103195.	1.6	10
32	A Lagrangian Cloud Model for the Study of Marine Fog. Boundary-Layer Meteorology, 2021, 181, 523-542.	1.2	10
33	Challenges and Opportunities in Atmospheric Dust Emission, Chemistry, and Transport. Bulletin of the American Meteorological Society, 2018, 99, ES115-ES118.	1.7	9
34	Multiscale interaction of inertial particles with turbulent motions in open channel flow. Physical Review Fluids, 2020, 5, .	1.0	9
35	Particle stresses in dilute, polydisperse, two-way coupled turbulent flows. Physical Review E, 2016, 93, 013111.	0.8	8
36	Settling strongly modifies particle concentrations in wall-bounded turbulent flows even when the settling parameter is asymptotically small. Physical Review Fluids, 2021, 6, .	1.0	8

DAVID H RICHTER

#	Article	IF	CITATIONS
37	Parameterized Vertical Concentration Profiles for Aerosols in the Marine Atmospheric Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9688-9702.	1.2	7
38	Investigating the Sensitivity of Marine Fog to Physical and Microphysical Processes Using Large-Eddy Simulation. Boundary-Layer Meteorology, 2021, 181, 473-498.	1.2	7
39	Influences of Polydisperse Sea Spray Size Distributions on Model Predictions of Airâ€Sea Heat Fluxes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032326.	1.2	5
40	A Formulation of the Thrust Coefficient for Representing Finite-Sized Farms of Tidal Energy Converters. Energies, 2019, 12, 3861.	1.6	4
41	Upscaling bimolecular reactive transport in highly heterogeneous porous media with the LAgrangian Transport Eulerian Reaction Spatial (LATERS) Markov model. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1529.	1.9	4
42	Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricanes. Journals of the Atmospheric Sciences, 2021, , .	0.6	4
43	Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile. Renewable Energy, 2022, 195, 637-647.	4.3	4
44	Detection of evolving Lagrangian coherent structures: A multiple object tracking approach. Physical Review Fluids, 2020, 5, .	1.0	3
45	Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	2
46	The most robust representations of flow trajectories are Lagrangian coherent structures. Journal of Fluid Mechanics, 2021, 927, .	1.4	2
47	Aerosol Activation in Radiation Fog at the Atmospheric Radiation Program Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035358.	1.2	2
48	Predicting Vertical Concentration Profiles in the Marine Atmospheric Boundary Layer With a Markov Chain Random Walk Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032731.	1.2	1
49	Editorial: Introduction to the 38th Annual Gallery of Fluid Motion (Chicago, IL, USA 2020). Physical Review Fluids, 2021, 6, .	1.0	0